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Abstract 

This paper presents a memory -based mo del of direct 
psychophysical scaling. The model is based on an 
extension of the cognitive architecture ACT-R and uses 
anchors that serve as prototypes for the stimuli classified 
within each response category. Using the ANCHOR 
model as a specific example, a  general Bayesian frame-
work is introduced. It provides principled methods for 
making data-based inferences about models of this kind. 
The internal representations in the model are analyzed as 
hidden variables that are constructed from the stimuli 
according to probabilistic representation rules. In turn, 
the hidden representations produce overt responses via 
probabilistic performance rules. Incremental learning 
rules transform the model into a dynamic system. A 
parameter-fitting algorithm is formulated and tested on 
experimental data. 

Introduction 
Parameter search is usually relegated to an appendix in 
the modeling literature, if it is discussed at all. And this 
is understandable: the emphasis usually is, as it should 
be, on describing the particular model and discussing its 
implications for the phenomena under study. Moreover, 
the search for suitable parameter values is often done 
by trial and error or by brute-force methods. This, how-
ever, need not necessarily be the case. There are 
principled ways of making data-based inferences about 
quantities used in a model, including parameter values. 
The immediate benefit of such methods is to speed up 
the model design cycle and expand the power, scope, 
and detail of the simulations. In addition, they can 
improve the conceptual understanding of the model by 
exposing relationships that would otherwise remain 
buried inside the black box. 

This paper outlines a general Bayesian framework for 
probabilistic models involving internal representations 
modifiable by learning mechanisms . One such model—
ANCHOR (Petrov & Anderson, 2000)—serves as a 
concrete example. First, the model is described in its 
own terms and is related to empirical data. It is then 
analyzed from a Bayesian perspective and a method for 
making data-based inferences is formulated. Next, the 
terms are generalized so that the resulting framework 
can be applied to a wide class of models. Finally, the 
algorithms are illustrated on experimental data. 

The ANCHOR Model 
ANCHOR is a memory-based model of psychophysical 
scaling tasks. It is based on the cognitive architecture 
ACT-R (Anderson & Lebière, 1998) extended with 
mechanisms for dealing with continuous (or analog) 
internal representations called magnitudes. 

Empirical Phenomena 
The model deals with unidimensional sensory continua 
such as loudness of tones or length of lines. The parti-
cipants in direct scaling studies are shown stimuli of 
various physical intensities and are asked to report the 
corresponding subjective magnitudes. The reports are 
verbal and typically use some numerical scale. There 
are several variations of this basic paradigm, only one 
of which is chosen for the purposes of this paper. The 
responses in category rating are restricted to a fixed set 
of categories—for example, the numbers from 1 to 9. 
The participants are instructed to rate the least intense 
stimuli with 1, the most intense ones with 9, and to 
space the remaining categories evenly in between. 

A number of robust empirical phenomena are well 
documented in the direct-scaling literature (e.g., see 
Gescheider, 1988, for review). Only the most salient 
ones are mentioned here—enough to provide some 
psychological substance to the abstract considerations 
in the following sections. Human performance is stoch-
astic and a whole distribution of responses is observed 
for each stimulus level. The means of these response 
distributions are described by the so-called Stevens’ law 
and their standard deviations by Ekman’s law. The 
former states that the mean ratings tend to be a power 
function of the stimulus: R=kSn (Stevens, 1957). The 
latter states that the standard deviation of each response 
distribution is approximately proportional to its mean 
(Ekman, 1959). 

The immediate stimulus on each trial is the major 
determinant of the corresponding response but other 
factors exert robust and measurable effects as well. 
These include the overall distribution of the stimuli 
used in the experiment (context effects, e.g., Parducci & 
Wedell, 1986), previous stimuli and responses (sequen-
tial effects, e.g., Jesteadt, Luce, & Green 1977), and 
various memory-related factors (memory effects and 
practice effects, e.g., Siegel, 1972). The ANCHOR 
model offers a unified explanation of these phenomena. 
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ANCHOR: Mechanisms and Equations  
The ANCHOR model stands at the intersection of two 
broad theories—Thurstonian psychophysics (Thurstone, 
1927) and the memory theory incorporated in ACT-R 
(Anderson & Lebière, 1998). From the former it adopts 
the notion of a subjective continuum of magnitudes. A 
stimulus with physical intensity S is represented by a 
magnitude M. Due to the intrinsic stochasticity of the 
perceptual mechanisms, a whole distribution of magni-
tudes is associated with each stimulus. It is assumed 
that these distributions are Gaussian, with mean and 
variance dependent on S. In keeping with Stevens law 
ANCHOR postulates that the mean of each distribution 
is a power function of the corresponding stimulus. 
Furthermore, in keeping with Ekman’s law it assumes 
that each standard deviation is proportional to the 
corresponding mean. These are not the only choices 
that are theoretically possible and consistent with the 
available empirical data (Norwich & Wong, 1997). Still 
they are the most straightforward pair and are adopted 
for this reason. Note also that they imply Weber’s law. 

The data set used in this paper deals with a parti-
cularly convenient sensory modality—physical length. 
The Stevens exponent for length is very nearly one 
(Stevens, 1957; Petrov & Anderson, 2000) and hence 
the power function becomes a simple linear function. 
This leads to Equation 1, which defines the perceptual 
transformation of the ANCHOR model. The magnitude 
M is roughly proportional to the stimulus S but there is 
also some multiplicative noise. This “perceptual noise” 
εεp is a normally distributed random variable with zero 
mean and standard deviation σσp, which is a free para-
meter of the model and does not depend on S. 

 M = k S (1+εp) [1] 

The task of the participant is to translate the subject-
ive sensation M into an overt response. Three classes of 
factors constrain the mapping between magnitudes and 
responses. First, there is an arbitrary component chosen 
by the experimenter and established by the instructions. 
This includes the number of response categories and 
their particular labels. Second, there is a constraint for 
homomorphism—a pressure to align the intrinsic order-
ing of the magnitude continuum with the ordering of 
the response scale. For instance, if M1 is more intense 
than M2, the corresponding responses should also be 
ordered appropriately. Finally, there is a tacit constraint 
for consistency—a pressure to use the same response 
for repeated presentations of the same stimulus 
throughout the experimental session. 

The first and third of these constraints strongly 
suggest that memory plays an important role in the 
direct scaling tasks. The same hypothesis is supported 
by many empirical phenomena and in particular the 
sequential, memory, and practice effects mentioned 
earlier (Siegel, 1972; Petrov & Anderson, 2000). This 
leads to the centerpiece of the model—the anchor. 

An anchor is an association between a magnitude and 
a response. There is one anchor for each response 
category. The anchor magnitude represents the proto-
typical member of this category. The collection of all 
anchors thus defines a mapping between the magnitude 
continuum and the response scale. When a stimulus is 
presented for rating, its corresponding magnitude M 
serves as a memory cue. The anchors then compete to 
match that target and one of them is retrieved. An 
alternative but equivalent conceptualization is that a 
pattern completion process fills in the response label 
given the magnitude. Either way, the final outcome is 
described by Equations 2 and 3. 
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Anchor retrieval is a stochastic process, just as any 
act of memory retrieval in the ACT-R architecture. The 
probability P(Ai) of selecting an anchor depends on two 
factors: (i) the similarity between the anchor magnitude 

iA  and the target magnitude M and (ii) the current 

availability of the anchor measured by its base-level 
activation Bi. The two factors are combined into a 
“goodness score” Gi (Eq. 2; h is a scaling parameter). 
The anchors then compete on the basis of their scores 
through the “softmax” Equation 3. The “temperature” T 
is a free parameter that controls the degree of non-
determinism of the selection process. 

Memory retrieval is noisy and is prone to biases Bi. 
Therefore it is not guaranteed to provide on each trial 
the anchor that best matches the target magnitude. The 
verbal protocols of human participants suggest that they 
are aware of the unreliability of their memory and seem 
to adopt a correction strategy. A typical report is, “This 
length looks like a 7… No, it’s too short for a 7. I’ll 
give it a 6.” 

The ANCHOR model implements these corrections 
in the following way. The magnitude Ai of the anchor 
retrieved from memory is compared against the target 
magnitude M. If the discrepancy ∆∆=(M–Ai) is less than 
some cutoff value c (a free parameter of the model), the 
response associated with the anchor is chosen as the 
final response on the trial. Otherwise the anchor 
response is corrected by +/–1 or occasionally even +/–2 
depending on the algebraic difference ∆∆ (cutoffs +/–c 
and +/–3c, respectively). The anchor magnitude is de-
graded by “memory noise” εεa (Eq. 4) analogous to the 
“perceptual noise” in the target magnitude (Eq. 1). Due 
to this noise in the inputs, the correction mechanism is 
stochastic and error-prone too. Nevertheless, it plays a 
useful and important role in the model. Among other 
things, it promotes the homomorphism between mag-
nitudes and responses. 
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So, the stimulus has been encoded, matched against 
anchors, and a response has been produced. Is this the 
end of the trial? According to the ANCHOR model and 
the broader memory theory, the answer is no. The 
cognitive system is plastic (within limits) and each 
experience seems to leave a mark on it. There are 
obligatory learning mechanisms that update the anchor 
magnitudes (Eq. 5) and their base-level activations (Eq. 
6). Consider the magnitudes first. On each trial, only 
one of the anchors is updated—the one that corresponds 
to the actual response. The new magnitude )1( +tA  of 
this anchor is pulled slightly toward the target 
magnitude M (Eq. 5). The parameter αα controls the 
learning rate. In the long run, each anchor magnitude 
becomes a weighted average of the magnitudes of all 
stimuli classified in the corresponding response 
category. Thus the anchors are true prototypes. 
However, recent stimuli weigh more than earlier ones. 
This introduces various sequential, transfer, and context 
effects (Petrov & Anderson, 2000).  

)()()1( )1( ttt MAA αα +−=+  [5] 

In contrast to the selective update of magnitudes, the 
base-level learning Equation 6 affects the availability of 
all anchors. The formula is not transparent and need be 
discussed only briefly here. It is an approximate and 
parameter-free version of the base-level learning 
equation in ACT-R (Anderson & Lebière, 1998, p. 
124). The availability B of each anchor reflects the 
frequency and recency of use of the corresponding 
response. The formula disregards the detailed history of 
the anchor; it retains only three critical pieces of infor-
mation: the lag since the most recent use tlast, the total 
time since the beginning of the experiment tlife, and the 
total number of uses n. 
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 Qualitatively, Equation 6 captures three important 
aspects of memory dynamics: sharp transient boost 
immediately after use, gradual buildup of strength with 
frequent use, and gradual decay in the absence of use. 
In terms of observable behavior, the rapid transient 
manifests itself in sequential assimilation and the grad-
ual strengthening/decay in non-uniform response dis -
tributions (Petrov & Anderson, 2000). 

General Framework 
ANCHOR is just a specific instance of a whole class of 
models. It is useful to introduce a general framework 
for analyzing such models. Such broader view sharpens 
the understanding of the particular model and makes the 
discussion relevant to other modeling efforts as well. 

It is assumed that time progresses in discrete steps or 
“trials”. The stimuli S(t) and responses R(t) are the only 
observable quantities. The model builds and mani-
pulates some internal representations H(t) to mediate 
between the two: S→→ H→→ R. These representations are 
hidden variables (or “hypotheses” in Bayesian terms). 

The inner structure of the model specifies two kinds 
of rules: representation rules governing the transition 
S→→ H and performance rules governing the transition 
H→→ R. Both kinds of rules are probabilistic. Thus on 
each trial the representation rules define a whole 
probability distribution over the space of possible 
representations conditional on the current stimulus S(t). 
Some sequence of chance events selects one specific 
realization H(t), which then drives the performance. The 
performance rules specify a probability distribution 
over the possible responses. Another chance event 
determines the final response R(t). Then the next stimu -
lus is presented and the whole cycle repeats. 

Each step of the process described so far depends on 
two kinds of parameters. The global parameters θθ are 
relatively few in number, apply throughout the model, 
and remain fixed during the whole session. There are 
also local parameters λλ(t) associated with the individual 
representational and/or processing units. Importantly, 
these local parameters are not static but may be updated 
on each step according to learning rules. This paper 
deals with the class of models whose learning rules are 
deterministic and incremental. That is, the updated 
values λλ(t) depend only on their previous values λλ(t-1), 
the current representations H(t), and on global para-
meters such as learning rates. In symbols: 
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The learning mechanisms make the model a dynamic 
system. The performance on a given trial depends not 
only on the current stimulus but also on the whole 
history of the computation. In the class of models dis -
cussed here, this history is condensed solely in the most 
recent update of the local parameters λλ(t-1). In other 
words the following Markov property is assumed: the 
operation at time t depends only on S(t), H(t), θθ, and the 
most recent values λλ(t-1). The representation rules can be 
written as Eq. 8 and the performance rules as Eq. 9. 
(Eq. 8 can be extended to include residual representa-
tions H(t-1) but this possibility is not pursued here.) 
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All these abstract notions can be illustrated on the  
ANCHOR model. It has six global parameters: per-
ceptual noise σσp, weight h, softmax temperature T, 
anchor noise σσa, correction cutoff c, and magnitude 
learning rate αα. This set of six values is collectively 



denoted θθ. There are two kinds1 of internal representa-
tions: magnitudes M and anchors A. (In this case the 
symbol A denotes not an anchor magnitude but a 
discrete value indicating which of the several anchors is 
retrieved on the particular trial.) Thus, the hidden states 
(or hypotheses) in the model can be conceptualized as 
pairs H=<M,A>. They are constructed in two steps with 
probabilities given by two separate representation rules. 
First, Equation 1 produces a magnitude M(t) given the 
stimulus S(t). Based on this magnitude, Equations 2 and 
3 then select an anchor A(t). This illustrates an important 
point about the formalism. The hidden variables H(t) 
(and, for that matter, S(t) and R(t)) need not be unitary or 
constructed in a single step. Various intermediate stages 
can be involved. Still, it is always possible in principle 
to consider the Cartesian product of all the components 
and think in terms of a (joint) distribution conditional 
on the stimulus (Eq. 8). Two local parameters λλ(t-1) are 

associated with each anchor: its magnitude iA and avail-

ability2 Bi. The corresponding update rules are given by 
Equations 5 and 6, respectively. 

Model Tracing and Parameter Search  
 The stage is now set to confront the issue of estimating 
unobservable quantities from experimental data. For 
concreteness, consider the problem of finding suitable 
values of the global parameters θθ. One approach is to 
treat the model as a black box and use Monte Carlo 
simulations to evaluate its performance under different 
parameter settings. Based on these estimates, a search 
algorithm such as gradient descent can be used to 
optimize some goal function of interest. For example, if 
the empirical accuracy is 80%, the optimization goal 
would be to bring the model accuracy as close as 
possible to this target value. This approach requires 
little thought and is easy to implement but has serious 
drawbacks both on technical and conceptual grounds. 
Monte Carlo methods are computer-intensive and their 
estimates are blurred by sample fluctuations. This slows 
down the search and derails all optimization algorithms 
that depend on comparisons between close choices for 
θθ. Moreover, there is danger of overfitting because the 
validity of the model is measured by the same criterion 
that guides the search (e.g., overall accuracy). 

This paper advocates another approach. It is to open 
the black box and work out in detail the various prob-
ability distributions underlying the overt behavior. This 
approach requires careful analytical derivations and a 
separate computer implementation. The returns on this 

                                                                 
1 Strictly speaking, the final response must also be represented 
internally. Due to the one-to-one correspondence with the 
overt response, however, this representation need not be 
considered among the hidden variables. 
2 Actually, three values must be main tained for each Bi but 
they stay hidden behind Equation 6. 

intellectual investment, however, can be considerable. 
The main leverage comes from the following idea: the 
probabilities are calculated directly from the structural 
equations of the model instead of being estimated by 
sampling. This information can then be used for various 
purposes as discussed below. 

The calculations are done on a trial-by-trial basis. 
Assume the process has been carried up to trial t–1 and 
estimates of the local parameters λλ(t-1) are available. The 
whole calculation is  conditional on some global para-
meter set θθ. Under these circumstances, when the next 
stimulus S(t) arrives the representation rules (Eq. 8) 
allow to calculate the conditional distribution: 

),,|( )1()()( θλ −ttt SHP  [10] 

In Bayesian terms, this is the prior distribution over 
the hypotheses. To implement that, one follows the 
logic of the model but at any point in which the original 
program would do a probabilistic choice and commit to 
a particular alternative, the modified version keeps all 
branches open and maintains a table of their respective 
probabilities.  

To illustrate, the first step in the “primary” ANCHOR 
implementation is to generate a random number εεp and 
use it to compute the internal magnitude M(t) according 
to Equation 1. In contrast, the model-tracing version has 
to represent the whole distribution of potential mag-
nitudes. The implementation (which is written in 
MATLAB) approximates the Gaussian distribution with 
an array of 15 discrete bins centered on kS(t) (Eq. 1) and 
spread out to cover 99% of the density. Thus, the 
modified program considers 15 alternative values in 
parallel instead of the single commitment M(t). Each of 
these values can occur in conjunction with any of the 
nine possible anchors. This creates a space of 135 
hypotheses Hij=<Mi,Aj>. The program represents it as a 
matrix and calculates the probability of each pair from 
Equations 2 and 3. Note that this requires knowledge of 
the current anchor magnitudes jA  and base-level acti-

vations Bj (that is, the local parameters λλ(t-1)).  
Back to general terms, once the prior probabilities of 

all hypotheses have been calculated (Eq. 10), a straight-
forward application of the performance rules (Eq. 9) 
gives the joint distribution of hypotheses and responses: 

=× − ),,|( )1()()()( θλtttt SHRP  [11] 
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This distribution contains a wealth of information. 

From that point on, the hidden variables introduced at 
earlier stages begin to be averaged out. This elimination 
can be engineered in various ways depending on the 
goals of the modeler. The following subsections outline 
some of the potential applications. 
 



Predicting the Responses and Fitting Parameters   
The obvious way to proceed from Equation 11 is to 
average out the unknown internal representations H(t). 
This produces the (marginal) probabilities of all poss-
ible responses R(t): 

),,|( )1()()( θλ −ttt SRP  [12] 

If the model is a good approximation to the actual 
process generating the observations, Equation 12 
should predict the actual response R(t)=rk with high 
probability on most trials. The log-likelihood L (Eq. 13) 
measures the overall goodness of fit on all available 
data D (the full sequence of stimuli and responses). 
This quantity can be used to guide the parameter search. 
Notice that L is a deterministic function of the para-
meters θθ and λλ(0) (given that the data are fixed). Thus, 
unlike in Monte Carlo methods, gradient algorithms can 
track the optimum much faster and with high precision. 
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It is worth pointing out that under this scheme the 
parameters are fitted using one criterion (L) while the 
final evaluation of the model is done by separate 
criteria (e.g., accuracy, response variability, sequential 
dependencies, and so forth) This reduces overfitting and 
dis courages “fis hing” for results. 
 
Model Tracing. The internal representations that 
people use are of particular interest in applications such 
as intelligent tutoring (Corbett, Anderson, & O’Brien, 
1995) or cognitive assessment (Martin & VanLehn, 
1995). When a cognitive model is available for some 
task domain, the Bayesian framework advocated here 
can be used to trace the probable path that a student is 
following. In such applications, it is of little utility to 
eliminate the hidden variables in order to predict the 
next  response. On the contrary, one wants to treat the 
observed response as an additional piece of information 
and obtain from Equations 11 and 12 posterior esti-
mates about H(t) via Bayes rule: 

),,,|( )1()()()( θλ −tttt SRHP  [14] 

 
Updating the Local Parameters. In addition to being 
useful in their own right, these posterior estimates (Eq. 
14) are necessary to close the tracing cycle. The local 
parameters λλ(t-1) must be updated at the end of trial t, so 
that the new values λλ(t) are available on trial t+1. The 
learning rules of the model (Eq. 7) define this transition 
but they involve the specific internal representation Hi. 
It is impossible to know which of the many potential 
structures H(t) has actually been realized on that 
particular trial. The most that can be calculated are the 
posterior probabilities (Eq. 14). The cleanest option at 
this point would be to consider all possible updates λλi 

and propagate them in parallel through all subsequent 
trials keeping track of the respective probabilities. Un-
fortunately, this scheme is computationally intractable. 
Some approximation must be used instead. 

There are several possibilities. One is to sample the 
posterior—to single out one value Hi at random accord-
ing to Equation 14 and use it in λλ(t). This approach, 
however, introduces randomness into the estimation 
process. The log-likelihoods calculated on this basis 
(Eq. 13) are no longer deterministic. 

Another possibility is to single out the maximum a 
posteriori (MAP) hypothesis and use it in the update 
rule (Eq. 7). This approach restores the determinism of 
the estimation process and has certain intuitive appeal. 
It, however, systematically overestimates the coupling 
between the internal representations H(t) and the overt 
responses R(t) (cf. Eq. 9). 

There is an important and widespread special case in 
which it is meaningful to combine alternative parameter 
estimates λλi into weighted linear combinations. In such 
cases, a “mean field” approximation is available. The 
idea is to take all alternative Hi, calculate the corre-
sponding updates λλi, and combine them into a single 
aggregate λλ(t) that is passed on to the next trial. The 
posterior probabilities (Eq. 14) serve as weighting coef-
ficients. (A related strategy using the prior probabilities 
(Eq. 10) can be preferable in some cases. The priors 
factor in the stimulus S(t) but not the response R(t).) 

The ANCHOR model has two learning rules and thus 
illustrates the problem. The update of the base-level 
activations B presents little difficulty because no hidden 
variables are involved (Eq. 6). It is clear which anchor 
is strengthened on each trial—the one corresponding to 
the overt response. In contrast, the update of the anchor 
magnitudes is more problematic because Equation 5 
involves the unobservable target magnitude M. As the 
magnitudes are additive, the mean field approximation 
is applicable. Recall that the hypotheses in the 
ANCHOR case are pairs Hij=<Mi,Aj>. To produce the 
posterior distribution of the magnitudes Mi alone, the 
anchor indicator variables must be averaged out from 
the joint posterior (Eq. 14). This leaves 15 probabilities 
P(Mi) corresponding to the 15 target magnitude bins. 
The mean-field version of Equation 5 thus becomes: 
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Empirical Test 
This final section applies the global parameter search 
algorithm to data from a category rating experiment 
(Petrov & Anderson, 2000). The original paper reports 
group-level fits of the ANCHOR model. The present 
framework allows us to extend the analysis to the level 
of individual participants. 

The stimuli for the experiment were pairs of dots 
presented on a monitor. The task of the 24 participants 



was to rate the distance between the two dots using the 
numbers from 1 to 9. Each session involved 450 trials. 

The results replicated all classical category-rating 
phenomena that fell within the scope of the experiment, 
including sequential effects of various kinds and the lin-
earity of the psychophysical scale for length. A battery 
of statistical measures designed to quantify these effects 
were calculated from the data of each participant. The 
ANCHOR model was then run on the same 24 stimulus 
sequences and the same statistics were calculated. The 
fits were very good on all dimensions (Petrov & 
Anderson, 2000, Table 1). The mean of each statistic 
calculated from the model data fell very close to the 
corresponding empirical mean. The variability in the 
empirical sample, however, was somewhat greater (by 
40% on average) than that of the model. 

The latter result is not surprising. The empirical data 
contain both within- and between-subject variability. 
All ANCHOR runs, on the other hand, used the same 
set of global parameters. Thus, the model data reflected 
only the inherent stochasticity of the mechanisms. 

A better way to confront the model with the empirical 
data is to have an individual parameter set θθp for each 
participant p. The algorithms described in this paper 
make this easy to do. Each stimulus-response sequence 
Dp generates a log-likelihood “landscape” (Eq. 13) over 
the space of global parameters θθ. A general-purpose 
optimizer (the fmincon function in MATLAB) can then 
be used to find the maximum-likelihood estimator θθp.  

We are now ready to derive individualized predic-
tions. For concreteness, suppose we are interested in the 
overall accuracy (measured by the stimulus-response 
correlation R2) and the  shape of the response dis tribu-
tion (measured by its standard deviation SD).We fix a 
parameter set θθp, run the model 10 times to generate 10 
response sequences, and calculate R2 and SD for each. 
After averaging over the 10 runs, we obtain a single 
prediction for R2

p and one for SDp. 
This procedure yields a distribution of 24 predicted 

R2 values—one for each participant—and similarly for 
the SDs. On the other hand, the corresponding empiri-
cal distributions are also available. The model is   suc-
cessful to the extent in which the predicted distributions 
are indistinguishable from their observed counterparts . 
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Figure 1:  Correlations between model data and empiri-
cal data. Left panel: stimulus-response correlations. 

Right panel: response standard deviations. 

Figure 1 illustrates the distribution overlap for our 
data. The correlation between the 24 empirical R2 and 
the corresponding predicted R2 is 0.93. The correlation 
among the standard deviations is 0.74. These results 
clearly indicate that the ANCHOR model is able to re-
produce the data well and that the Bayesian algorithms 
are able to find appropriate parameter sets. 
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