
Probing the Mental Representation of Relation-Defined Categories 

Ava Y. Du (du.618@osu.edu) 
Department of Psychology, Ohio State University, 1835 Neil Ave., Columbus, OH 43210 

John E. Hummel (jehummel@illinois.edu) 
Department of Psychology, University of Illinois, 603 E. Daniel St., Champaign, IL 61820 

Alexander A. Petrov (apetrov@alexpetrov.com) 
Department of Psychology, Ohio State University, 1835 Neil Ave., Columbus, OH 43210 

 
 
 

Abstract 
The mental representation of relation-based concepts is 
different from that of feature-based concepts. In the present 
experiment, participants learned to categorize two fictional 
diseases that were defined either by a feature (e.g., short cells) 
or an ordinal relation (e.g., diseased cells being shorter than 
healthy cells). After the participants learned the categorization 
task to criterion, their strategies were probed in transfer task in 
which features and relations were pitted against one another. 
Finally, participants engaged in a stimulus reconstruction task. 
The results supported the prediction that participants who had 
adopted a feature-based strategy on a stimulus dimension, as 
identified by transfer data, tended to reconstruct values close to 
the means presented during training. By contrast, participants 
who had adopted a relation-based strategy tended to exaggerate 
that dimension away from the mean of the training examples 
and in the direction of the category-defining comparative 
relation. These data add to the growing literature suggesting 
that, unlike featural categories, relational categories are not 
represented in terms of the category’s central tendency. 

Keywords: Category learning; relations; typicality; probing 
the category representation; extreme-value hypothesis 

Introduction 
Ever since Wittgenstein’s (1953) observations about the 
“family resemblance” nature of concepts, cognitive 
psychologists have thought of concepts as lists of features, 
each of which appears only probabilistically across various 
exemplars of the concept. However, many important 
concepts are better conceived not as collections of features 
but as relations between things (Barsalou, 1985; Gentner & 
Kurtz, 2005; Goldwater, Bainbridge, & Murphy, 2016; 
Murphy & Medin, 1985). For example, a barrier may be a 
concrete structure on a roadway that blocks one’s usual route 
to work, or a financial limitation that prevents a student from 
attending her school of choice. Although these two kinds of 
barrier have few features in common, they share the relational 
property that each stands between an agent and her goal. 

The distinction between feature- and relation-based 
concepts is important for several reasons. Whereas many 
animals use feature-based concepts such as food or bed, it has 
been argued that only humans understand relation-based 
concepts such as series, limit, connection, closure, support, 
resistance, which play a central role in many uniquely human 
forms of thought (Penn, Holyoak, & Povinelli, 2008). 

Another difference between feature- and relation-based 
concepts concerns how they are learned. Feature-based 
concepts amount to statistical associations between features 
and category labels and thus can be learned by simple 
associative systems. By contrast, relation-based categories 
cannot be learned by tracking simple statistical associations 
between individual features and labels (Doumas, Hummel, & 
Sandhofer, 2008; Hummel & Holyoak, 2003). Instead, these 
and other authors have proposed that relational concepts are 
learned by a process more akin to schema induction by 
intersection discovery over examples (Gick & Holyoak, 1983; 
Hummel & Holyoak, 2003; Jung & Hummel, 2015a, 2015b), 
which makes probabilistic relation-based concepts very hard 
to learn as their intersection is the empty set (Kittur, Hummel, 
& Holyoak, 2004). 

There is also evidence that relation-based concepts are 
represented differently than feature-based ones (Gentner & 
Kurtz, 2005). The latter very consistently demonstrate 
prototype effects as pointed out by Wittgenstein (1953; see 
Murphy, 2002, for review): A “good” member of a feature-
based category is one that is typical, sharing many features 
with the prototype (i.e., the central tendency) of the category. 
By contrast, a “good” member of the relational category “diet 
food” is not a typical diet food (which is low in calories but 
bland), but rather an extreme exemplar, which has zero 
calories but is delicious (Barsalou, 1985): That is, the 
“goodness” of a member of at least some relation-based 
categories may be a function not of its similarity to the 
prototype, but of the degree to which it instantiates extreme 
values of the relevant relations (Goldwater, Markman, & 
Stilwell, 2011; Kim & Murphy, 2011; Kittur Holyoak, & 
Hummel, 2006; Rein, Goldwater, & Markman, 2010). A 
central goal of the present study is to explore this extreme-
value hypothesis.  

Kittur et al. (2006) studied people’s learning of (partially 
deterministic) relation-based categories and found support 
for the extreme value hypothesis. In their experiment, 
participants learned two categories, A and B, defined by the 
relations between two shapes. Every exemplar depicted an 
octagon and a square that differed in their size, darkness, 
relative height, and which was in front of the other. In the 
prototype of category A, the octagon was larger, darker, 
above and in front of the square, and in the prototypical B 
these four relations were reversed. To ensure that participants   
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Figure 1: Schematic depiction of the three phases of our 

experimental design (white boxes) and the cognitive 
structures (shaded ovals) hypothesized to be involved. Solid 

arrows depict causal links; the dashed line depicts a 
statistical dependence between the performance measures. 
 

learned the categories in terms of the relations between 
octagon and square (rather than their exact sizes and 
darkness), the absolute sizes and darkness varied during 
training in a limited range, but the relative size and darkness 
was always consistent with the category structure. Using a 
deterministic version of this category structure, Kittur et al. 
(2006) showed that the category structures participants learn 
do not equate goodness with typicality. During a post-
training transfer task, participants were shown two members 
of a given category and asked to say which was a “better” 
member. The most striking result was that they consistently 
chose the exemplar with the most extreme values of a relation 
as the “best” exemplar, even though that exemplar depicted 
values outside the range that was experienced during training. 
Importantly, however, this extrapolation took place only for 
relations that had been deterministic during training. 

The present study uses a novel method to further explore 
the extreme-value hypothesis. The experiment had three 
phases depicted by the white boxes in Figure 1. In the 
training phase the participants performed a classic two-
category classification-learning task with feedback. The 
stimuli involved “diseased cells” and “healthy cells” that 
varied along 4 dimensions as detailed below. These gave rise 
to 4 features (e.g., short diseased cells) and 4 relations (e.g., 
shorter diseased cells compared to healthy cells). Both types 
of attributes – features and relations – were deliberately 
defined over the same underlying stimulus dimensions to 
minimize differences in their visual salience. The category 
structure was manipulated experimentally between 
participants in two main groups during training. In the 
Relation group, one relation (counterbalanced) was 
deterministic (i.e., perfectly predictive of the category label), 
whereas each of the other 7 attributes was 75% diagnostic. In 
the Feature group, one particular (counterbalanced) feature 
was deterministic, whereas each of the other 7 attributes was 
75% diagnostic. 

Note that each training environment afforded multiple 
strategies to achieve perfect categorization accuracy. The 
deterministic strategy was to identify the one deterministic 
attribute for the particular environment and rely on it for 
categorization. However, various probabilistic strategies that 
pool information across multiple attributes were available as 

well. These strategies can be pure or mixed depending on 
whether relations and features are used together. The 
polyvalent training environments allowed us to investigate 
two questions of interest. First, whether participants 
spontaneously prefer deterministic over probabilistic 
strategies. Based on earlier research (Kittur et al., 2004; Jung 
& Hummel, 2015a, 2015b) we hypothesize that they would, 
especially in the Relation group. Second, we are interested in 
the possibility that the Relation environment might promote 
a relational mind-set distinct from the mind-set in the Feature 
environment (Vendetti, Wu, & Holyoak, 2014). This would 
predict a preference for pure (relation only) over mixed 
(relation plus feature) strategies in the Relation group. 

Following training, the participants’ knowledge of the 
category structure was probed in two complementary ways 
(Fig. 1). During the transfer phase participants categorized a 
sequence of novel probe stimuli designed to differentiate 
relation- from feature-based strategies. Finally, during the 
reconstruction phase they used sliders to construct 
representative members of the categories they had learned 
previously. Of interest was whether participants who were 
identified as relying on a given relation (as opposed to feature) 
would selectively exaggerate the reconstructed value of the 
corresponding stimulus dimension relative to the mean value 
of that dimension in the training sample.  

Following Kittur et al. (2006), we predicted that during 
reconstruction: (i) participants will produce more extreme 
values in comparison to central tendencies for the arguments 
of the relations they had adopted, whereas (ii) those who have 
learned deterministic features will reproduce the central 
tendencies they were exposed to during training. 

The design of the present study is somewhat complex 
because it combines experimental and quasi-experimental 
aspects. The training sample is manipulated experimentally 
via random assignment of participants to groups (Fig. 1). 
However, because each training environment affords 
multiple strategies, the internal category representation of 
successful learners is not completely determined by the 
experimental manipulation. We expect individual differences 
in accuracy, strategy choice, and reconstruction performance. 
These differences reflect variability in motivation, propensity 
to adopt a relational mind-set (Vendetti et al., 2014), and 
various other internal factors (e.g., Goldwater et al., 2018). 
The transfer phase serves as a manipulation check and also 
assesses individual differences in strategy choice. This sets 
up the quasi-experimental aspect of the study: We predict a 
correlation between the transfer and reconstruction measures 
across participants, as depicted in Figure 1. 

Method 

Participants, Groups, and Inclusion Criteria 
The experiment was conducted on-line during the COVID-19 
pandemic. Students at the Ohio State University participated 
for course credit. Pilot studies showed that many students 
from this pool do not take their experimental participation 
seriously. To mitigate this problem, we fixed in advance two 
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criteria for inclusion in the sample. The “low” criterion was 
defined as follows: We excluded participants who (i) failed 2 
or more of the 4 attention checks embedded within the trial 
sequence, (ii) had a median response time during training less 
than 0.3 sec, or (iii) produced a repetitive pattern of responses 
(e.g., pressing the same key on most trials). Due to COVID-
related problems, we had access to 89 participants in total, 12 
of whom failed the low criterion, leaving us with a sample of 
72 students. All participants were randomly assigned to two 
training environments: Relation and Feature. Each main 
group was further partitioned into 4 subgroups to 
counterbalance the 4 dimensions of stimulus variation. The 
data collection protocol ensured a balanced sample at the top 
level: We ended up with 36 participants per group. 
Unfortunately, we could not maintain balance among the 
subgroups. There was also a “high” inclusion criterion that is 
defined below. 

Stimuli and Category Structure 
Participants were instructed to diagnose two fictional 
diseases – “Azolitis” (A) and “Leporidis” (L) – on the basis 
of fictional “micrographs” from patients. Each micrograph 
(i.e., exemplar) contained two populations of cells, diseased 
and healthy, that varied on four dimensions: the overall 
number of cells of each kind, the number of organelles within 
each cell, the number of hairs on the surface of each cell, and 
the length of each cell (the width of all cells was fixed to 25 
pixels). “Healthy” cells were rendered in grey and “diseased” 
cells were rendered in pink. All cells were presented on a 
light grey background (Figure 2). One micrograph was 
presented on each trial with the content area (i.e., grey area) 
of 895 pixels wide x 415 pixels high. Each participant used 
their own computer; cell phones and tablets were not allowed. 

In the following, we will use uppercase and lowercase As 
and Ls to refer to the typical relations (uppercase) and 
features (lowercase) of Azolitis and Leporidis, respectively. 
The “diseased” Leporidis cells always were 125 pixels in 
length [l], with 4 cells [l], 8 organelles [l], and 4 hairs [l].  

 

 
Figure 2: Each stimulus consisted of a “micrograph 

sample” that contained “diseased cells” (pink) and healthy 
cells (grey) varying in the overall number of cells, number 
of organelles within a cell, number of hairs, and cell length. 

 
 

Table 1: Illustration of the scheme for generating the 
training environment for one particular subgroup (R1). The 
four stimulus dimensions are designated 1, 2, 3, 4 across the 
top; R stands for relation and F stands for feature. The rows 
specify 4 instances of Azolitis and 4 of Leporidis. Relations 
consistent with either disease are denoted “A” or “L”, and 
features are denoted “a” or “l” as specified in the text. The 
two entries marked with asterisks in the R1 column make 
R1 the single deterministic attribute in this subgroup. The 
other 7 training environments are constructed analogously.  

 
The prototypical micrographs of Azolitis had diseased cells 

that were shorter [A], more numerous [A], and with fewer 
organelles [A] and more hairs [A] than healthy cells. The 
prototypical Azolitis was also characterized by specific 
absolute feature values on the diseased (pink) cells, namely, 
75 pixels in length [a], 8 cells [a], 4 organelles within each 
cell [a], and 8 hairs on the surface of each cell [a]. By 
contrast, the prototypical micrographs of Leporidis had 
diseased cells that were longer [L], less numerous [L], with 
more organelles [L] and fewer hairs [L] than healthy cells.  

To generate a training exemplar, the absolute features of 
the diseased cells and their relations to the healthy cells were 
determined from the group-specific category structure. The 
features of the healthy cells were then chosen to ensure that 
(i) the differences between diseased and healthy cells were 
easy to detect visually, and (ii) the absolute features of the 
diseased cells took values consistent with the feature-based 
definition of their category.  

In the Relation condition, one relation (counterbalanced 
across subgroups) was deterministically related to the 
category label. For example, consider the subgroup whose 
deterministic relation was the number of cells. Table 1 lists 
the 8 concrete training exemplars for this particular subgroup. 
Notice that in every Azolitis exemplar the pink cells were 
more numerous (denoted by A in the R1 column) than the 
grey cells, and in every Leporidis exemplar they were less 
numerous (denoted by L) than the grey cells. Each of the 
other 7 attributes was 75% diagnostic. In the Feature 
condition, the deterministic attribute was always a feature 
(counterbalanced), while the relations and the other 3 features 
were 75% diagnostic. For example, in the subgroup whose 
deterministic feature was the number of cells (denoted F1), 
every Azolitis exemplar had exactly 8 pink cells (a) and every 
Leporidis exemplar had 4 pink cells (l). 

Instances Stimulus Dimensions 
 R1 F1 R2 F2 R3 F3 R4 F4 

Azolit.1 A* l A a A a A a 
Azolit.2 A a L l A a A a 
Azolit.3 A a A a L l A a 
Azolit.4 A a A a A a L l 

Lepor.1 L* a L l L l L l 
Lepor.2 L l A a L l L l 
Lepor.3 L l L l A a L l 
Lepor.4 L l L l L l A a 
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Table 2: Prototypes and probe exemplars presented in the 
transfer phase. Same notation as in Table 1. “O” denotes 

neutral (i.e., equal) relations, and “o” denotes neutral feature 
values (halfway between the prototypes). 

Instances Stimulus Dimensions 
 R1 F1 R2 F2 R3 F3 R4 F4 

Proto. A A a A a A a A a 
T1.1 A l O o O o O o 
T1.2 L a O o O o O o 
T2.1 O o A l O o O o 
T2.2 O o L a O o O o 
T3.1 O o O o A l O o 
T3.2 O o O o L a O o 
T4.1 O o O o O o A l 
T4.2 O o O o O o L a 
Proto. L L l L l L l L l 
 
Each of these 8 training environments (R1-R4, F1-F4) 

afforded multiple categorization strategies as discussed in the 
Introduction. A participant could adopt a purely relational or 
a purely featural strategy regardless of the subgroup they 
were assigned to. The experimental manipulation promoted 
one type or the other but imposed no hard constraints. A 
transfer phase followed the training phase and was designed 
to help us adjudicate which strategy (if either) an individual 
participant had learned during training. The transfer phase 
was the same for all participants in all groups (Table 2). 

The transfer phase presented a sequence of probe 
exemplars such that a participant who had learned a relation-
based strategy would label them one way, but one who had 
learned a feature-based strategy from the same training set 
would label them the opposite way. Each probe exemplar 
focused on a single critical dimension: its relation agreed with 
the prototype of one category, but the feature agreed with the 
opposite prototype. The other 3 stimulus dimensions were 
kept fixed at neutral values. These neutral values are denoted 
“O” for relations and “o” for features in Table 2. To 
neutralize a relation, the diseased and healthy cells were 
equal on the corresponding dimension. To neutralize a 
feature, the value for the diseased cells was set halfway 
between the values of the two prototypes: 100 pixels in 
length, 6 cells, 6 organelles, and 6 hairs.  

Procedure and Scoring 
Participants were first instructed about the two diseases, 
shown examples of the stimuli, and asked questions designed 
to verify that the participant understood the stimuli and 
stimulus dimensions. The training phase then began. The 
participants were presented with a sequence of micrographs 
– one per trial – and required to categorize each by pressing 
either A (for Azolitis) or L (Leporidis). Initially, participants 
had to make random guesses, but they were expected to learn 
from the accuracy feedback, which appeared underneath the 
micrograph at the end of each trial.  

 
1 The length was rescaled linearly to the 0 – 14 range. One new 

unit corresponds to 12.5 pixels. 

Trials were presented in blocks, where each block 
presented eight exemplars, four per category (as illustrated in 
Table 1) in a random order. Training ended when the 
participant reached the “high criterion” by getting at least 
87.5% (7/8) correct for three blocks in a row, or after they 
completed for 312 trials, whichever came first. 

After training, each participant entered the transfer phase. 
They were instructed that they would be asked to help make 
diagnosis for some new samples whose correct classification 
may be not known. Each trial of the transfer phase presented 
either a probe exemplar (as defined above) or, as a form of 
practice, a category prototype. Each probe exemplar and 
prototype were presented four times, for a total of 40 transfer 
trials. Accuracy feedback was given only in response to the 
prototypes. 

The transfer data were scored separately for each stimulus 
dimension. If a participant made a relation-based response on 
at least 7 of the 8 trials that probed dimension N, by definition 
she heeded relation RN (e.g., R1). Conversely, if she made at 
least 7 feature-based responses on the same trials, she heeded 
feature FN (e.g., F1). Otherwise, she did not heed this 
dimension. Overall, the transfer phase yielded 8 binary 
heeding scores per participant, organized in 4 mutually 
exclusive pairs. 

After the transfer trials, each participant entered the final 
reconstruction phase, in which they were asked to reconstruct 
five “good” examples of each disease. Each reconstruction 
trial began with a display depicting a number of “healthy” 
(grey) cells, and the participant’s task was to adjust the 
number of diseased cells, as well as their length, number of 
hairs, and number or organelles. A graphical user interface 
with four sliders allowed the participant to adjust each 
dimension independently. Each slider1 supported values from 
0 to 14. This range extended beyond the values that were 
sampled during training (3 – 10). All sliders were at their 0 
(leftmost) position at the beginning of a reconstruction trial. 

The reconstruction data were scored separately for each 
stimulus dimension. We defined reconstruction scores so that 
0 indicates the mean of all training exemplars of the specific 
disease whose “good” example is being constructed, and the 
relationally correct direction is encoded as positive. This 
allows to average the scores across the two diseases. The 
units are unchanged, so that +1 indicates one extra cell (or 
organelle, etc.) than the central tendency of the training set. 
Averaging across the 5 reconstruction trials for each disease 
produced 4 aggregated reconstruction scores per participant 
– one for each stimulus dimension. 

Results and Discussion 
Training Phase  
Sixteen participants reached the high criterion in the Relation 
condition and 18 did in the Feature condition. In other words, 
there was approximately 50% attrition in both groups. This is 
a serious but, we hope, not a fatal problem. We speculate that 
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the high attrition rate is predominantly due to insufficient 
motivation of many participants working on-line from home 
during a pandemic, rather than to some intrinsic difficulty of 
our categorization task. This hopeful interpretation is 
consistent with the comparable attrition rate in the two 
groups. Furthermore, the transfer data indicated that all 38 
people who failed to reach the high criterion heeded at most 
1 of the 8 attributes, and 22 of them did not heed any attribute. 
It seems that many participants paid just enough attention to 
satisfy the low inclusion criterion, but not enough to engage 
seriously with the task. Others found an attribute that yielded 
75% correct and settled with it, ignoring the instructions that 
clearly stated that perfect accuracy was possible. 

Our sample size, which was limited to begin with, was cut 
in half by attrition. Mindful of the low statistical power that 
results from this unfortunate circumstance, we are reluctant 
to draw strong conclusions from the present data. We report 
them mostly as a preliminary exploration inviting further 
research with adequate sample sizes. 

For comparison with the study of Kittur et al. (2004), we 
report descriptive statistics about trials-to-criterion, which 
was their main dependent measure. For the 34 participants 
who reached the high criterion in our sample, the mean time-
to-criterion was virtually the same in both groups: M = 217. 
The standard deviations were nearly equal as well: SD = 119 
for Relation, 113 for Feature. This is consistent with the 
results of Kittur et al. (2004) – their deterministic relational 
and deterministic featural conditions took comparable times 
to learn. As a reminder, our training environment included 
one deterministic attribute in all groups. 

Transfer Phase 
We included a transfer phase in our experimental design (Fig. 
1) with two related purposes in mind: as a manipulation check 
and as a probe into the strategies adopted by individual 
participants. We tabulated how many participants heeded 
various combinations of stimulus attributes (in the technical 
sense defined by the transfer scores described earlier).  

The participants who reached the high criterion tended (in 
aggregate) to heed considerably more attributes than those 
who did not reach the criterion. Concretely, 2, 7, 4, 1, and 2 
participants in the Relation condition heeded 0, 1, 2, 3, and 4 
attributes, respectively; the corresponding counts in the 
Feature condition were 4, 9, 3, 2, and 0. By contrast, 22 of the 
participants who failed to reach the criterion heeded no 
attribute, and the remaining 16 heeded a single attribute. 

An important metric for any participant was whether or not 
they heeded the deterministic attribute for their training 
environment. Consider first the 36 participants who were 
assigned to the Relation group. Fourteen of them heeded their 
subgroup-specific deterministic relation and – remarkably – 
all these 14 had reached the high criterion during training. By 
contrast, 20 of the 22 participants who did not heed their 
deterministic relation had not reached the criterion either. 
Thus, with only a couple of exceptions (one of which was a 
near miss), the necessary and sufficient condition for 
reaching the high criterion in the Relation training  

 
Figure 3. Proportion of the participants assigned to each 
training environment (rows) who heeded the attributes 
arrayed along the columns, as determined at transfer. 

R1~R4 and F1~F4 denote Relation and Feature subgroups. 
 

environment was to identify and heed the appropriate 
deterministic relation. Turning to the Feature environment, 
the data suggest that heeding the subgroup-specific 
deterministic feature was a sufficient but not a necessary 
condition for reaching the high criterion. Concretely, 12 of 
the 36 participants in the Feature group heeded their 
deterministic feature, and 11 of them had reached criterion. 
Of the 24 people who didn’t heed the deterministic feature, 7 
had reached criterion and 17 had not.  

From this point on, we focus our attention on the 34 
participants who reached the high criterion. This restriction is 
presupposed throughout the remainder of the article. 

The distinction between relations and features is of special 
interest. Nobody heeded more than 2 relations or more than 
2 features. This seems to rule out most pure probabilistic 
strategies in light of the necessity to pool information across 
3 non-deterministic dimensions to achieve perfect accuracy 
under our design (cf. Table 1). 

Figure 3 explores the possibility of mixed strategies. The 8 
rows correspond to the 8 training environments. The Relation 
(R1-R4) and Feature (F1-F4) subgroups are shown in the 
upper and lower halves, respectively. The colored squares 
encode the fraction of the participants in each subgroup who 
heeded the 8 attributes arrayed along the columns. The “hot 
band” along the diagonal indicates that most people heeded 
their subgroup-specific deterministic attribute. Note that the 
lower left-hand quadrant is mostly blank. This indicates that 
the participants in the Feature environment tended (in 
aggregate) to heed features at the expense of relations. 

Reconstruction Phase 
The reconstruction phase was designed to probe the internal 
representations used by the participants who successfully 
learned the task (as indicated by reaching the high criterion). 
Recall from the Method that each participant received an 
aggregated reconstruction score for each of the 4 stimulus 
dimensions. 

 
 

2028



Figure 4: Aggregated reconstruction scores plotted as a 
function of the Type factor inferred from the transfer data. 

Each of the 34 participants contributes 4 points to the plot – 
one per stimulus dimension. Diamonds depict means 

 
Our approach is to analyze the reconstruction data as a 

function of the strategies inferred from the transfer data (Fig. 
1). The unit of analysis is the individual stimulus dimension 
(e.g., the number of cells in a micrograph). The transfer data 
yielded a pair of heeding scores per dimension. There are 
three possibilities: a given participant can heed the relational 
aspect of a dimension, or heed its featural aspect, or not heed 
it at all. We can thus re-conceptualize the transfer data as 
defining a factor with three levels: Relation, Feature, and 
None. This factor is referred to as Type. Each participant 
contributes 4 data points to the analysis – one per stimulus 
dimension – and each of them has a definite type. 

Now, the extreme-value hypothesis predicts that stimulus 
dimensions that are encoded as relations in the category 
representation would tend to be exaggerated during 
reconstruction compared to dimensions that are not so 
encoded. Under our scoring scheme, this translates into a 
prediction of greater reconstruction scores for dimensions of 
type Relation compared to the other two types. In other 
words, the extreme-value hypothesis predicts a main effect of 
the Type factor. Furthermore, stimulus dimensions that are 
encoded as features in the category representation are 
predicted to be reconstructed near the central tendency of the 
training sample. Thus, the reconstruction scores are predicted 
to be near zero (which is the code for the central tendency). 

The violin plots in Figure 4 suggest these predictions are 
borne out in the present data. The means of the three clusters 
of dots (depicted by bold diamonds in the figure) seem to 
conform to the profile predicted by the extreme-value 
hypothesis. An ANOVA analysis points to the same 
conclusion. There is a significant main effect of the Type 

factor (F (2, 132) = 12.860, MSE = 23.893, p < .001). A 
planned comparison revealed that the reconstruction scores 
are significantly greater for type Relation than Feature (t 
(37.424) = 3.275, p < .003). Another comparison revealed 
greater scores for type Relation than None (t (26.523) = 
4.374, p < .001). Although closer to 0 than the other two 
types, the reconstruction scores for type Feature were 
significantly different from 0 (t (25) = –2.227, p < .035; 95% 
confidence interval from –1.078 to –0.04). Finally, note that 
the concentration of points within the None violin in Figure 
4 reflects the fact that many people tended not to heed many 
stimulus dimensions. 

General Discussion 
The mental representation of relation-based concepts remains 
poorly understood in cognitive science. However, previous 
findings suggest that whereas the “goodness” of a member of 
a feature-based concept is a function of its similarity to the 
prototype of that concept, at least some relation-based 
concepts seem to favor extreme members (Goldwater et al., 
2011; Kittur et al., 2006; Rein et al., 2010).  

This difference was supported by our data. We ran a 
category learning experiment designed to test the hypothesis 
that people who learn feature-based representations of our 
categories will reconstruct those categories according to their 
feature-based mean values (as is well established in the 
literature; Murphy, 2002). However, people who learn 
relation-based representations of categories will represent 
those categories in a manner that is biased in the direction of 
the category-defining relation(s) (Kittur et al., 2006). As 
predicted, participants whose transfer scores indicated that 
they tended to categorize exemplars based on a relation 
tended to exaggerate that relation in their reconstruction of 
category members. For example, if a participant noticed that 
number of diseased cells in disease A tended to be larger than 
the number of healthy cells, then in the reconstruction of an 
exemplar of disease A, that participant would tend to make 
the number of diseased cells in the reconstructed sample 
larger than it had typically been in training. By contrast, also 
as predicted, a participant whose transfer performance 
suggested a feature-based strategy tended to reproduce values 
closer to the mean value of the relevant feature(s) during the 
reconstruction phase.  

It seems difficult to account for the observed profile of 
reconstruction scores in Figure 4 in terms of any simple kind 
of contrast learning mechanism (e.g., Davis & Love, 2010). 
Recall that the deterministic features were defined by 
contrasting values (4 vs. 8) on all the stimulus dimensions. 
The theory that the representation of one category is repulsed 
away from (i.e., maximizes its contrast with) the alternative 
category cannot explain why these values seem to be drawn 
closer together in the case of participants who responded to 
the exemplars’ features, whereas they were pushed further 
apart in the case of participants who responded to the 
exemplars’ relations to the “healthy” cells.  

An interesting aspect of the data from the transfer task 
(Figure 3) is that participants’ strategies tend to cluster 
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around the broad categories Relation or Feature, as a function 
of which kind of attribute (a relation or a feature) was 
deterministic during their training, even though only one of 
those attributes was deterministic. For example, if a given 
participant, p, experienced relative number (of diseased vs. 
healthy cells) as deterministic, then p tended to focus on 
relative properties on all the other dimensions. But if p 
experienced that absolute number of disease cells (a feature) 
was deterministic, then p would tend to rely on the specific 
feature values of the other dimensions as well. This focus on 
Relations (or Features) generally as a result of experience 
with a single deterministic relation (or feature) is reminiscent 
of Vendetti et al.’s (2014) “relational mind-set”: Having 
experienced one useful relation (or feature), people seem 
biased to look for other useful relations (or features). 

Last but not least, we acknowledge two limitations of the 
current study: First, the statistical power is low due to the 
small sample size. Second, the reconstruction data were 
analyzed in terms of individual differences in a quasi-
experimental design. We attribute the relationship between 
the two dependent measures in Figure 4 as evidence of a 
common unobserved cause. We hypothesize that this 
common cause is the internal representation depicted in 
Figure 1. However, in principle the observed relationship can 
stem from some other internal factor such as the propensity 
to adopt a relational mind-set. For these reasons, the current 
results are preliminary and should be interpreted with care. 

Much remains unknown about the representation of 
relation-based concepts, but the present data contribute to an 
emerging picture of relation-based concepts as being quite 
different from their feature-based counterparts (Gentner & 
Kurtz, 2005). It is well known that associative learning 
algorithms, which excel at feature-based learning, have 
difficulty extrapolating outside the space of their training 
examples. By contrast, symbolic functions (such as 
mathematical equations), which are inherently relational in 
nature, often extrapolate to very broad set of potential 
input/output pairings. Many participants extrapolated beyond 
the training data in our reconstruction task, generating values 
for stimuli that were pushed away from the prototype in the 
direction that exaggerated the deterministic relation. 
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