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Context effects in category rating on a 7-point scale are shown to reverse direction depending
on feedback. Context (skewed stimulus presentation probabilities) was manipulated between
and feedback within subjects in two experiments with diverse stimulus sets. Prototype- and
exemplar-based scaling models are contrasted on the basis of their diverging predictions in
this paradigm. The critical factor is that prototype-based categories cannot increase their cov-
erage on the continuum without decreasing their coverage on the opposite side. The range
of qualitative behavioral patterns consistent with each model class is shown using computer
simulations with two representative members: ANCHOR and an instance-based modification
thereof. ANCHOR can exhibit context effects in either assimilative or compensatory direction
depending on feedback. The instance-based model always exhibits assimilative context effects.
The human data show a significant context-by-feedback interaction. The main context effect
is assimilative in one data set and compensatory in the other. This pattern is consistent with
ANCHOR but rules out the instance-based variant, which fails to account for the compen-
satory effect and the interaction. This suggests that human category rating is based on unitary
representations.
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Category rating is a widely used method of data col-
lection in experimental psychology. Psychophysical scales
(e.g., Stevens, 1957), similarity judgments, typicality judg-
ments attitude questionnaires, and health self-reports—all
these tasks involve classifying stimuli using an ordered set
of relatively few categories such as 1 . . . 7 or very dissimilar
. . . very similar. Such ratings are among our primary depen-
dent measures. It is important to formulate a detailed, quan-
titative theory of how people produce these ratings (Petrov
& Anderson, 2005). Moreover, the category rating task con-
strains theories of perception, categorization, and memory.
As such, it is a fertile field for theoretical integration. The
present study uses a psychophysical paradigm to differen-
tiate between two prominent theories of categorization. It
also makes a contribution to the psychophysical literature by
demonstrating that external feedback can reverse the direc-
tion of context effects in category rating.

A classic controversy in the categorization literature (see,
e.g., Ashby, 1992, for review) contrasts prototype and
exemplar-based representations of categories. According to
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the prototype view (e.g., Posner & Keele, 1968; Smith &
Minda, 1998; Rosch, 1975), each category is represented by
a unitary description of the central tendency of its members.
Novel instances are classified on the basis of their similarity
to the prototypes of various categories. Alternatively, cate-
gories can be represented by storing the individual instances
themselves (Kruschke, 1992; Medin & Shaffer, 1978; Nosof-
sky, 1986, 1992; Nosofsky & Zaki, 2002). According to this
exemplar-based view, novel instances are classified on the
basis of the weighted aggregate similarity to the known in-
stances of various categories. Thus, prototype systems ag-
gregate the information about known category members as
they are stored in memory, whereas instance-based systems
delay the aggregation until retrieval time. It has proven sur-
prisingly difficult to discriminate between these competing
views and a lively debate continues to this day (e.g., Buse-
meyer, Dewey, & Medin, 1984; Minda & Smith, 2001, 2002;
Nosofsky, 2000; Nosofsky & Stanton, 2005; Olsson, Wen-
nerholm, & Lyxzèn, 2004; Smith & Minda, 2000, 2002;
Stanton, Nosofsky, & Zaki, 2002; Zaki, Nosofsky, Stanton,
& Cohen, 2003). The difficulty stems in part from the great
flexibility of instance-based models, which can mimic pro-
totype models in certain parameter regimes (Nosofsky & Jo-
hansen, 2000; Nosofsky & Zaki, 2002; but see Myung, Pitt,
& Navarro, 2007). Various hybrid schemes have also been
proposed (e.g., Ashby, Alfonso-Reese, Turken, & Waldron,
1998; Erickson & Kruschke, 1998; Huttenlocher, Hedges,
& Vevea, 2000; Love, Medin, & Gureckis, 2004; Nosofsky,
Palmeri, & McKinley, 1994).

A physical analogy clarifies the differences between the
two classes of models. It is as if each category represen-
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tation generates a gravitational field1 across the stimulus
space. When a new stimulus appears somewhere in this
space, the categories compete to incorporate the new unit
mass into their representation. By definition, all the mass of
a prototype-based category is concentrated in a single point:
the prototype. In this article, this will be referred to as the
unitary constraint on category representation. The resulting
gravitational field is radially symmetric and centered on that
point. By contrast, instance-based representations are not
subject to the unitary constraint. The mass of an instance-
based category is dispersed across multiple points of unit
mass each. The resulting gravitational field can have very
irregular topography.

Prototype-based models have well-known limits of ap-
plicability (e.g., Ashby & Gott, 1988; Ashby & Maddox,
1992, 1993; Medin & Shaffer, 1978; Nosofsky, 1992; Nosof-
sky et al., 1994; Nosofsky & Zaki, 2002). There are cat-
egories that instance-based models (and humans) can learn
but prototype-based ones cannot. The complement is not
true. Instance-based models can learn any stationary cate-
gorization task with enough practice with feedback (Ashby
& Alfonso-Reese, 1995). Thus, they have great represen-
tational flexibility. It has been argued on the basis of this
flexibility that instance-based accounts offer a general, all-
encompassing model of human categorization (e.g., Nosof-
sky & Johansen, 2000; Nosofsky & Zaki, 2002). Even in
domains in which prototype-based theories can account for
the data, the argument goes, instance-based theories should
still be preferred on grounds of parsimony unless there is
“clear and definitive evidence for the operation of prototype
abstraction in people’s category representations” (Nosofsky
& Zaki, 2002, p. 939).

The present experiment provides one piece of such evi-
dence. Our results establish a limit for the applicability of
instance-based theories of categorization. Despite their spec-
tacular success in other tasks, it appears that instance-based
theories cannot provide an empirically adequate account of
category rating without feedback.

The unitary constraint plays a key role in our argument.
The two types of representations can be differentiated on the
basis of one of its side effects. When a unitary category ac-
quires a new member, the prototype moves toward the cor-
responding point in stimulus space. But this also moves it
away from the opposite region of the space. Thus, there are
locations where the gravitational field of the category weak-
ens after the incorporation of a new member. Instance-based
categories, on the other hand, can expand with impunity be-
cause they are free from the unitary constraint. Each new
acquisition makes a positive contribution to the gravitational
field across the entire stimulus space. It cannot happen that
the field weakens anywhere after the incorporation of a new
member.

Categorization models are often tested in binary classifi-
cation tasks with multidimensional stimuli (e.g., Medin &
Shaffer, 1978). Our task, by contrast, has seven response cat-
egories and unidimensional stimuli (distances between pairs
of dots). If the instance-based theory is a truly universal
account of categorization, it should apply to this task too.

One advantage of our task is that it makes it easy to detect
whether a category “loses ground” on one side when it “gains
ground” on the opposite side. This is because the stimuli are
linearly ordered and because most categories are flanked by
other categories. Category rating also introduces the notion
of systematic alignment—homomorphism—between stimuli
and responses (Stevens, 1957). This homomorphism sup-
ports the formation of categories without any external feed-
back (Petrov & Anderson, 2005). This in turn allows for
powerful experimental manipulations that are not possible in
a two-choice categorization paradigm. The present experi-
ments use such feedback manipulation.

Human categorization is sensitive to the frequencies of oc-
currence of various stimuli in the environment. This sensi-
tivity gives rise to phenomena known as context effects in the
psychophysical literature. The classification of a given stim-
ulus depends not only on the stimulus itself but also on the
distribution of other stimuli in a block of trials (e.g., Chase,
Bugnacki, Braida, & Durlach, 1983; Marks, 1993; Parducci,
1974). One convenient way to manipulate the location of a
category prototype is to increase the presentation frequency
of stimuli near one end of the continuum or the other. The
simplest experimental design is to compare the performance
under a skewed stimulus distribution with the baseline per-
formance under a uniform distribution. Two kinds of con-
text effects are possible: assimilative and compensatory. For
concreteness, suppose a group of observers is presented with
predominantly long stimuli. By definition, if the stimuli
tend to be systematically overestimated relative to baseline,
there is assimilation—the responses are attracted toward the
densely populated end of the scale. The rich get even richer.
If the stimuli tend to be systematically underestimated in-
stead, there is compensation. The response distribution is
less skewed than the stimulus distribution.

Instance-based models predict assimilative context ef-
fects. Because all instances are stored separately and simi-
larities always add, densely populated regions must have an
attractive effect on any new instance. The predictions of
prototype-based models are more complex because of the
presence of two opposing mechanisms. One mechanism
is assimilative—frequently used prototypes become more
active, which gives them an advantage in the competition
for new members. However, there is also a compensatory
mechanism—when a prototype moves towards the densely
populated region of the space, it “abandons” the less dense
regions to competing prototypes. The overall context effect
depends on the relative strengths of these opposing forces.
Both assimilative and compensatory context effects are pos-
sible. A quantitative model is needed to weigh the relative
strengths of the various factors.

In this article, we explore the qualitative patterns of be-
havior predicted by a representative example of each model
class. The class of prototype-based models is represented by
ANCHOR (Petrov & Anderson, 2000, 2005). It is a memory-

1 Technically, this field is proportional to the product of the (es-
timated) base rate and the (estimated) probability density function
of the category (cf. Ashby & Alfonso-Reese, 1995).
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based scaling model that stores a single anchor per cate-
gory. Each anchor is a weighted average of all stimuli labeled
with the corresponding response. The class of instance-based
models is represented by a variant of ANCHOR that stores a
new exemplar on every trial. It is referred to as INST here
and can be regarded as a modification of the well-known
Generalized Context Model (Medin & Shaffer, 1978; Nosof-
sky, 1986, 1988). ANCHOR and INST are identical in all
respects except their category representations. Thus, any dif-
ferences in their observable behavior must follow from this
representational difference.

Human categorization is a dynamic process that gives rise
to sequential, practice, and other dynamic effects. ANCHOR
has two incremental learning mechanisms that account for
a comprehensive list of these effects in category rating and
absolute identification (Petrov & Anderson, 2005). A com-
petitive learning mechanism adjusts the location of each an-
chor along the magnitude continuum. A base-level learning
mechanism updates the availability of the anchors. Under
skewed stimulus distributions, these two mechanisms tend to
push the average response level in opposite directions. Base-
level learning is assimilative whereas competitive learning is
compensatory.

The compensatory tendency is a direct consequence of
the unitary constraint on ANCHOR representations, as de-
tailed in the next section. Moreover, this compensatory ten-
dency disappears in the presence of external feedback. Thus,
ANCHOR predicts that the context effects can have opposite
directions with and without feedback. This prediction was
confirmed in two experiments that manipulated the stimulus
frequencies within subjects and feedback between subjects
(Petrov & Anderson, 2005). The experiments reported here
have a complementary design: The frequencies are manipu-
lated between and feedback within subjects, in order to trace
the feedback-induced dynamics of the context effects.

INST also has two incremental learning mechanisms. Its
base-level learning is a special case of that in ANCHOR—
instances decay with time. The dynamic adjustment of an-
chor locations, however, is replaced in INST by the mem-
orization of separate exemplars. Once committed to mem-
ory, the locations of these exemplars never change. Con-
ceptual analysis and computer simulations demonstrate that
this mechanism produces assimilative context effects. Thus,
INST has no mechanism that can counterbalance the assim-
ilative influence of frequent stimuli. INST can never produce
compensatory context effects. It can only assimilate, and this
assimilation is exacerbated in the absence of feedback.

The next section presents the ANCHOR theoretical
framework and explains the key predictions in qualitative
terms. ANCHOR can produce some behavioral patterns that
INST cannot, even though the representational scheme of
ANCHOR is more constrained than that of INST.2 The re-
sults of Experiment 1 are compatible with ANCHOR but
not INST. Although context effects are assimilative over-
all, there is a significant interaction with feedback. Lack
of feedback makes the context effects less assimilative and
can even reverse their direction under certain conditions. A
second experiment replicates this context-by-feedback inter-

action with different stimuli and under tighter controls. The
main effect of context is compensatory in the second data set,
which is even more problematic for INST. On the basis of
these empirical findings and a theoretical analysis of the task
demands, we conclude that category rating is based on proto-
types and not instances. Finally, the broader implications are
discussed and the models are compared to other influential
models from the literature.

Theoretical Framework
The two models presented in this article are based on the

ANCHOR theoretical framework (Petrov & Anderson, 2000,
2005). It integrates three broad theories: memory-based cat-
egorization (e.g., Nosofsky, 1986; Rosch, 1975), Thurstonian
psychophysics (Thurstone, 1927; Torgerson, 1958), and the
theory of memory incorporated in the ACT–R architecture
(Anderson & Lebiere, 1998; Anderson & Milson, 1989). The
ANCHOR theory is described in detail elsewhere (Petrov &
Anderson, 2005). The present analysis is predicated on the
four principles summarized below.

Main Principles
Internal Magnitude Continuum. It is assumed that some

sensory process maps the intensity of the physical stimu-
lus onto an internal magnitude. It is this internalized quan-
tity that can be committed to memory and compared against
other magnitudes.

Content-Addressable Memory. It is possible to establish
associations between a magnitude and the label of a response
category. The anchors in ANCHOR and the instances in
INST are such associations. They substantiate the mapping
between magnitudes (and hence the stimuli represented by
them) and responses. Given a new target magnitude for clas-
sification, the memory fills in the corresponding response la-
bel. This completion process is stochastic and depends on
two factors: (a) the similarity of each memory element to
the target and (b) the base-level activation of each memory
element.

Explicit Correction Strategies. People are aware that their
“first guess” is not always reliable and adopt explicit correc-
tion strategies. The product of memory retrieval is not always
reliable because the memory system is noisy and biased in
favor of frequent and/or recent items. The role of memory
is to provide a reference point in the vicinity of the target,
thereby converting the global scaling problem into a local
comparison problem. The final response can increment or
decrement the retrieved category label. An introspective re-
port of a trial might go like this: “This looks like a 5. No, it’s
too short for a 5; I’ll give it a 4.” It is well known that people
rely on such anchor-plus-adjustment heuristics in uncertain
situations (Tversky & Kahneman, 1974). However, the pro-
found impact that even occasional corrections can have on

2 This illustrates that representational flexibility does not neces-
sarily entail behavioral flexibility (R. Nosofsky, personal commu-
nication, April 28, 2010).
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the dynamical stability of a memory-based system has only
recently been appreciated (Petrov & Anderson, 2005). The
correction mechanism is the major ANCHOR innovation rel-
ative to standard memory-based theories. It is what allows
ANCHOR to unfold a rating scale without any external feed-
back. The correction strategy is not elaborated here because
it does not inform our present focus on prototypes versus in-
stances. We should keep in mind, however, that without cor-
rections both models fall pray to runaway winner-takes-all
dynamics in the absence of feedback.

Obligatory Learning. The state of the system is incremen-
tally updated at the end of each trial. One learning mecha-
nism updates the base-level activations of the memory ele-
ments and thus indirectly tracks the base rates of the cor-
responding responses. A second learning mechanism tracks
the probability density of each category across the magnitude
continuum. The latter mechanism is sensitive to the unitary
constraint on category representation. The two models pre-
sented below differ mainly in the way they learn the proba-
bility densities of categories.

Two Models: ANCHOR and INST
The ANCHOR model instantiates these theoretical prin-

ciples in a concrete, implemented system.3 See Appendix A
for a list of equations and Petrov and Anderson (2005) for a
comprehensive treatment.

Briefly, ANCHOR uses prototype representations: There
is one anchor per response category. The instructions in our
experiments call for a 7-point response scale. Thus, under the
unitary constraint, there are 7 anchors in the model. When a
new stimulus is presented, its magnitude serves as a memory
cue and the anchors compete to match it. The winning an-
chor represents ANCHOR’s “first guess” and provides a ref-
erence point for the correction mechanism. The latter may
increment or decrement the anchor response depending on
the discrepancy between the target and anchor magnitudes.
This introduces a relative-judgment component to ANCHOR
(cf. Stewart, Brown, & Chater, 2005) and accounts for the
growing evidence of negative generalization between highly
dissimilar stimuli (Stewart, Brown, & Chater, 2002; Jones,
Love, & Maddox, 2006).

The adjustments are systematic but conservative. Their
systematicity promotes the homomorphism between stimuli
and responses even without feedback. Because positive dis-
crepancies trigger positive corrections, large stimuli tend to
map to high responses in the long run. Because correction
thresholds are conservatively high, it matters which anchor is
used as reference—the response is often assimilated toward
it. This is how factors such as frequency and recency ex-
ert their influence—anchor selection is sensitive to them and
subsequent correction does not compensate for them fully.
This insufficiency of adjustment is a common theme in the
diverse literature on anchoring effects (e.g., Hastie & Dawes,
2001; Wilson, Houston, Etling, & Brekke, 1996).

After committing to a response, ANCHOR updates the
corresponding anchor to reflect the incorporation of a new
stimulus into this category. If there is feedback, this is it;

otherwise the system’s own response designates the anchor
for update. The base-level activation of this anchor increases,
whereas the activations of all other anchors decay. A separate
learning rule adjusts the location of the anchor on the magni-
tude continuum. The basic idea is very simple—the anchor
moves a little towards the new exemplar being incorporated
into the category. Only the anchor for the current response is
updated; all other anchors stay put. This competitive learn-
ing rule sets the location of each anchor to the (exponentially
weighted) running average of the magnitudes of all stimuli
classified under the associated response category.

INST is our representative member of the class of
instance-based models. It is identical with ANCHOR in all
respects except that it does not obey the unitary constraint
on category representations. It stores a separate exemplar on
each trial. Consequently, there is no need for competitive
learning. It is replaced by simple memorization of individual
exemplars. Each exemplar has a base-level activation that
decays with time. The exemplars compete to match the tar-
get on each trial. This competition is governed by the same
equations as in ANCHOR and is mathematically equivalent
to that in the Generalized Context Model (GCM, Nosofsky,
1986, see Appendix A). The competition involves hundreds
of memory elements in INST as opposed to seven elements
in ANCHOR.

Once an instance is retrieved from memory, it is subject to
the same correction strategy as in ANCHOR. This is a major
difference from GCM. It is what allows INST to perform not
only absolute identification with feedback (Nosofsky, 1997)
but also category rating without feedback (Petrov & Ander-
son, 2005). The decaying activation of INST’s exemplars is
a second difference, although there are GCM variants that
involve exemplar strengths and response biases (Nosofsky,
1988, 1991; Nosofsky & Palmeri, 1997).

Context Effects: Push and Pull
Both ANCHOR and INST are adaptive dynamic systems.

Obligatory learning is one of their foundational principles.
As new stimuli are presented and classified under various re-
sponse categories, the internal representations of these cat-
egories change in systematic ways. This in turn affects the
classification of future stimuli. Because stimulus frequency
is a potent determinant of this dynamics, both models predict
context effects on a principled basis.

INST always predicts assimilative context effects under
skewed stimulus distributions. To illustrate, suppose long
stimuli are more frequent than short ones. As each exem-
plar is stored individually, the memory pool contains many
instances labeled 5, 6, or 7 and few instances labeled 1, 2,
or 3. Now, suppose a target in the middle of the range is
presented. Its correct classification is 4, but it is also quite
similar to instances labeled 3 and 5. By sheer force of num-
bers as all instances compete to match the new target, the
probability to retrieve an instance labeled 5 is greater than the
probability to retrieve an instance labeled 3. Consequently,

3 Open-source Matlab implementation of both ANCHOR and
INST is available at http://alexpetrov.com/proj/anchor/
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the new stimulus is misclassified as 5 more often than it is
misclassified as 3. The responses tend to shift toward the
densely populated regions on the scale—an assimilative con-
text effect. None of the other INST mechanisms can reverse
the direction of this effect. The activations of all old instances
decay at the same rate. The correction mechanism operates
on the single instance retrieved from memory on a given trial.
Although some retrieval mismatches are corrected, many go
undetected. Thus, the assimilative tendency induced by the
uneven gravitational fields persists, though attenuated. The
important contribution of the correction mechanism is to pre-
vent this tendency from running out of control in the absence
of feedback (Petrov & Anderson, 2005).

ANCHOR, on the other hand, is consistent with both as-
similative and compensatory context effects. This is because
the two learning mechanisms in ANCHOR push in oppo-
site directions. The overall context effect depends on the
parameter-dependent relative strengths and interactions of
these opposing forces.

The base-level learning mechanism in ANCHOR has an
assimilative influence. To continue the above example, if
more stimuli have been labeled 5 than 3, the activation of an-
chor 5 will be stronger than that of anchor 3. This is how the
base rates of the categories are represented in ANCHOR (and
ACT–R more generally). Active anchors are more likely to
be retrieved from memory. Categories with many members
thus exert stronger gravitational fields than categories with
few members, everything else being equal.

But not everything else is equal in ANCHOR because
of the compensatory influence of the competitive learning
mechanism. Figure 1 illustrates the qualitative situation. A
configuration with uniformly located, equally active anchors
serves as baseline (top). The cone around each anchor de-
picts its gravitational field. The rectangular areas delineate
the resulting partitions of the magnitude continuum. (The
stochasticity of the anchor selection mechanism is ignored
for simplicity. See Appendix A for details.) Now, suppose a
long stimulus is classified under the category represented by
the middle anchor in Figure 1. After this stimulus is averaged
in, the anchor location shifts to the right. The gravitational
field of this anchor also shifts without growing in size. As
a result, a region formerly labeled 2 is now labeled 1, and a
region formerly labeled 3 is now labeled 2. The net result is
a systematic decrement of the overt responses.

It is convenient to formulate a descriptive rule of thumb to
refer to this effect. According to this inversion rule, when-
ever the location of any anchor increases, responses decrease
on average, and vice versa. The fundamental reason for this
inversion is the unitary constraint on category representa-
tions. Because there is only one anchor per category, when it
moves towards some region of the stimulus space, it is forced
to leave the opposite region behind. In the latter region (e.g.,
to the left of the black anchor in Figure 1b), the gravitational
field weakens after the incorporation of a new member.

The competitive learning tracks the probability density of
the magnitude distribution. In skewed stimulus contexts, all
anchor locations shift toward the densely populated end of
the continuum. For example, suppose there is a preponder-

Figure 1. Illustration of the compensatory influence of the compet-
itive learning mechanism in the ANCHOR model. The cone around
each anchor (circle) depicts its “gravitational field” on the target
magnitude continuum (horizontal axis). Assume the anchors are
labeled 1, 2, 3 from left to right. Top: Baseline configuration with
three equally spaced anchors. Bottom: Anchor 2 has shifted to the
right after averaging in a long stimulus. As a result, a (grey) region
formerly labeled 2 is now labeled 1, and a region formerly labeled
3 is now labeled 2. Thus, whenever an anchor shifts to the right, the
responses shift to the left and vice versa.

ance of long stimuli. As they are being averaged in, the
anchor locations shift toward longer values. By the inver-
sion rule, the overt responses tend to shift in the opposite
direction—a compensatory context effect.

This compensation counteracts the assimilatory tendency
of the base-level learning. The opposition between the two
learning mechanisms dampens any big fluctuations in either
direction and aids the correction mechanism in preserving
the stability of the system.

The Role of Feedback

ANCHOR is consistent with compensatory context effects
where as INST is not. This difference can be used to dis-
sociate the two models empirically. However, both models
are consistent with assimilative context effects. Assimilative
patterns are therefore ambiguous and must be dissociated on
the basis of some other variable. The presence or absence of
feedback is one such variable.

INST is relatively insensitive to feedback. None of its
mechanisms is changed by feedback in any fundamental
way.4 ANCHOR, on the other hand, is affected by feedback.
The differential predictions of the two models hinge again
on the competitive learning mechanism (and hence on the
unitary constraint enforced by it).

External feedback effectively switches competitive learn-
ing off. This is because when veridical feedback is available,

4 This insensitivity depends on the correction mechanism.
Instance-based models without corrections are generally extremely
sensitive to feedback.
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the model always updates the anchor representing the correct
classification of the stimulus. This fixes the anchor locations
to the internal images of the corresponding stimuli regard-
less of their presentation frequencies. The only remaining
variability comes from perceptual fluctuations, which have
no systematic effect on the overt responses.

ANCHOR’s activation learning, on the other hand, ex-
erts its assimilative tendency regardless of feedback. Skewed
stimulus distributions always lead to skewed activation pro-
files, which in turn affect the retrieval probabilities and hence
the responses. The assimilative tendency in INST persists
regardless of feedback for similar reasons.

In summary, ANCHOR makes the following predic-
tions. With feedback, context effects must be assimila-
tive because the compensatory tendency of the competitive
learning mechanism is switched off and all that remains is
the assimilative tendency of the activation learning mecha-
nism. Without feedback, the direction of the context effects
is parameter-dependent. When feedback alternates across
blocks, it interacts with context so that the context effect must
be less assimilative with feedback than without.

Experiment 1

The present experiment is designed to differentiate the two
classes of categorization models on the basis of these diverg-
ing predictions. A set of seven line lengths is used through-
out. Three contexts—uniform, low, and high—are defined
by different frequency distributions. Context is manipulated
between subjects and feedback within subjects.

Method

Stimuli and Apparatus. The stimuli were pairs of white
dots presented against a uniformly black background on a
17-inch AppleVision monitor. The viewing distance was
approximately 600 mm. The independent variable was the
distance between the centers of the two dots. The stimulus
set consisted of seven dot pairs with the following distances:
420, 460, 500, . . . , 660 pixels (420 pixels ≈ 134 mm ≈ 13
degrees of visual angle [dva]; 660 pixels ≈ 211 mm ≈

20 dva). The full width of the monitor was 1000 pixels
(320 mm, 32 dva). The imaginary segment formed by the
dots was always horizontal and was randomized with respect
to its absolute horizontal and vertical position on the screen.
The stimulus set for each participant was generated and ran-
domized separately. Each dot was roughly circular in shape
with a diameter of 16 pixels (5 mm, 0.5 dva).

Observers. Fifty-five undergraduate students at Carnegie
Mellon University participated in the experiment to satisfy a
course requirement.

Design. Each stimulus sequence consisted of 17 blocks
of 28 trials each. The presentation frequencies in each block
varied depending on context as follows: Uniform (U) blocks
contained 4 presentations of each stimulus. Low (L, posi-
tively skewed) blocks contained 7, 6, 5, . . . , 1 presentations
of Stimuli 1, 2, 3, . . . , 7, respectively. High (H) blocks were

skewed in the opposite (negative) direction. The order of
presentation was randomized within each block.

There were 5 experimental groups: Group U1 presented
17 uniform blocks. Groups L1 and L2 presented 1 uniform
block followed by 16 low blocks. Groups H1 and H2 pre-
sented 1 uniform block followed by 16 high blocks. The first
block was always uniform and always with feedback. The
feedback-first Groups U1, L1, and H1 gave veridical feed-
back on blocks 2–5, 10–13 and no feedback on blocks 6–9,
14–17. The no-feedback-first Groups L2 and H2 gave no
feedback on blocks 2–5, 10–13 and veridical feedback on
blocks 6–9, 14–17.

Procedure. The participants were instructed that there
were seven stimuli and seven responses and that their task
was to identify each stimulus with a number from 1 to 7.
The instructions stated that the 7 stimuli would be shown
“multiple times in random order.” Nothing was mentioned
about presentation frequencies.

Each trial began with a 500-ms alert sound followed by the
presentation of a dot pair on the monitor. The dots remained
visible until the participant entered their response on the key-
board. Then the dots were replaced by a big white digit in-
dicating the correct identification in feedback blocks or by
an uninformative “X” in no-feedback blocks. The character
stayed for 1100 ms. Then the screen was cleared and the next
trial began. Its 500-ms alert sound served as the inter-trial in-
terval. Each session lasted about 40 minutes and consisted of
476 trials divided into 8 periods with short breaks after trials
70, 140, 196, 252, 308, 364, and 420.

Dependent Variable. Petrov and Anderson (2005) intro-
duced a general method for tracking the average response
levels (ARLs). Context effects manifest themselves as ARL
deflections under different conditions. ARL is our primary
dependent variable throughout this article. It is defined as the
area under the Stevens function divided by the stimulus range
(Petrov & Anderson, 2005). The Stevens function R̄ = F(S )
gives the expected category rating of each stimulus (Stevens,
1957). It is a good summary of the response policy across
the stimulus range. The ARL is designed to condense this
summary to a single number that can be estimated from be-
havioral data collected with arbitrary presentation frequen-
cies. ARL is calculated in two steps. First, the coefficients of
the Stevens power function R̄ = R0 + aS n are estimated from
the stimulus-response pairs. As the exponent n for physi-
cal length is virtually 1.0 (Stevens & Galanter, 1957; Petrov
& Anderson, 2005), simple linear regression suffices for the
present analyses. The second step of the ARL calculation is
also very simple for linear functions. The ARL equals the
predicted response to the stimulus in the middle of the range:

ARL = R0 + a(S min + S max)/2 (1)

Our middle stimulus is 540 pixels long. Thus,
ARL = R0 + 540a. The coefficients R0 and a are estimated
by linear regression. The stimulus-response sequence is seg-
mented into 9 nonoverlapping periods of 56 trials each.5 A

5 The first period, which is always uniform, is only 28 trials long.
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Figure 2. Average response levels for the line-length ratings in Ex-
periment 1. Each line plots the mean of the 11 individual profiles in
the corresponding group. Group U1: uniform context. Groups L1
and L2: low context (frequent short stimuli; upward shifts indi-
cate compensation). Groups H1 and H2: high context (frequent
long stimuli; upward shifts indicate assimilation). The vertical grid
lines mark transitions from feedback to no-feedback blocks or vice
versa. Groups U1, L1, H1: feedback on Trials 1–140, 253–364.
Groups L2 and H2: feedback on Trials 1–28, 141–252, 365–476.

separate regression line is fitted and ARL calculated for each
period. This converts the raw data to a profile of 9 average
response levels per participant.

Results and Discussion

Figure 2 plots the mean ARL profiles for the five experi-
mental groups. The data show clear-cut context effects mod-
ulated by feedback in agreement with the ANCHOR model.
The overall direction is assimilatory—the average response
levels in High context (thick lines with triangular markers)
tend to exceed those in Low context (thick lines with no
markers). The ARL in Group U1 (Uniform context) is be-
tween the ARLs in Groups H1 and L1.

Importantly, the overall assimilatory tendency is attenu-
ated or even reversed during the no-feedback blocks. This
feedback modulation is most evident for Groups L1 and L2.
As the presentation frequencies are the same in both groups,
the zig-zag pattern in their ARL profiles is driven entirely by
the feedback manipulation. In particular, the highest ARL in
the whole data set occurs during the initial no-feedback pe-
riod in Group L2 (dashed line, Trials 29–140). Given the pre-
ponderance of short stimuli in this group, a high ARL indi-
cates a compensatory context effect. When feedback is intro-
duced in Group L2 on Trial 141, the average response level
drops by 0.8 category units and the context effect becomes
assimilatory. In Group L1, which is released from feedback
at the same time, the ARL increases by 0.4 units and the con-
text effect becomes compensatory. This context-by-feedback

interaction is predicted by ANCHOR and inconsistent with
INST.

The statistical significance of these findings is confirmed
by a mixed-design ANOVA. For simplicity, Group U1 and
the initial “warm-up” point on each ARL profile are not in-
cluded. Context (H and L) and Order (feedback-first and
no-feedback-first) enter as between-subject factors; Feed-
back (0–1) and Period (1–4) enter as within-subject factors.
The temporal order of observations is ignored. The signif-
icant main effect of Context (F(1, 40) = 13.1, p < .001,
η2

p = .25) validates the overall assimilatory context effect in
Figure 2. The significant Context by Feedback interaction
(F(1, 40) = 17.7, p < .001, η2

p = .31) validates the feedback
modulation of the context effect. Some higher-order interac-
tions are significant too (e.g., Context by Feedback by Order,
F(1, 40) = 13.3, p < .001, η2

p = .25). The main effect of
Order is not significant (F(1, 40) < 1).

There is a significant main effect of the Feedback factor
(F(1, 40) = 20.9, p < .001, η2

p = .34). Averaged across all
contexts, the ARLs without feedback tend to exceed those
with feedback. This tendency is evident, for example, in
the control group U1 in Figure 2 (thin line). We attribute
it to an idiosyncratic feature of our experimental setting. In
general, the participants tend to overestimate the length of
our stimuli—the baseline ARL in our data set (≈ 4.2, cf. tri-
als 1–28) overshoots the halfway point (4.0) on the scale.
Similar overshoot was observed in earlier experiments with
these stimuli (Petrov & Anderson, 2005). Explicit feedback
tends to bring the ratings closer to ideal performance. That is,
there is downward pressure on the ARLs during the feedback
blocks. Without feedback, the pressure is released and the
ARLs tend to increase. This tendency amplifies the context-
by-feedback interaction in low contexts and obscures it in
high contexts. This explains why the zig-zag pattern is much
more pronounced for Groups L1 and L2 than for Groups
H1 and H2. The interpretability of the data is not jeopar-
dized, however, because the theoretically relevant interaction
is strong enough to overcome this tendency. In particular, the
ARL in Group H2 tends to be lower without feedback than
with feedback. Once again, absence of feedback promotes
the compensatory context effect consistent with ANCHOR.

Assuming the idiosyncratic tendency discussed above
does not interact with Context, we can cancel it out by sub-
tracting two ARL profiles obtained in complementary con-
texts. Thus we define a new dependent variable Assimilation:

Assimilation = ARL(H) − ARL(L) (2)

Positive and negative values indicate assimilative and
compensatory context effects, respectively. The ARL pro-
files in Figure 2 (ignoring the uniform group) combine into
the Assimilation profiles in Figure 3. The overall assimila-
tive context effect is evident from the positive sign of nearly
all Assimilation values. The modulatory effect of feedback
is manifested in the interlocking zig-zag pattern. Feedback
blocks (marked by symbols) consistently show more assimi-
lation than the no-feedback blocks (no symbols).
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Figure 3. Context effects in the line-length rating task from Fig-
ure 2. The average response level in low context [ARL(L)] is sub-
tracted from that in high context [ARL(H)] to measure assimila-
tion. The vertical grid lines mark transitions from feedback to no-
feedback blocks or vice versa. The assimilative effect is stronger in
the feedback blocks (circles and squares) than in the no-feedback
blocks (plain lines). This interaction is predicted by the prototype-
based model but inconsistent with the instance-based model.

Model Fits

To assess how well INST and ANCHOR can account for
the ARL profiles, each model was fitted to the data in Fig-
ure 2 by minimizing the root mean square error (RMSE) be-
tween predicted and observed ARLs (see Appendix B for
details). ANCHOR fits better (RMS E = 0.154) than INST
(RMS E = 0.173) with the same number of free parameters
(Table B1 in Appendix B). Figure 4 plots the best-fitting
ARL profiles and the corresponding Assimilation profiles.

Panels a and c in Figure 4 indicate that both models ac-
count for the overall assimilative context effect in Figure 2.
Also, both models account for the tendency of the ARL to
overshoot the midpoint of the response scale. The models
produce this tendency by adjusting their correction thresh-
olds so that upward corrections are more frequent than down-
ward corrections (see Appendix A for details). This intro-
duces a systematic upward drift of the average response lev-
els (Petrov & Anderson, 2005). The drift is stronger in the
absence of feedback and thus both models account for the
main effect of the Feedback factor as well. The ARL drifts
upward when there is no feedback, regardless of context. The
zig-zag pattern in Uniform context (the line labeled U1 in
Figures 2 and 4) is entirely driven by this effect.

Critically, ANCHOR accounts for the Context by Feed-
back interaction whereas INST does not. The difference is
apparent in High contexts. When long stimuli are more fre-
quent than short ones, INST predicts higher ARLs in the no-
feedback blocks relative to the feedback blocks (thick lines
with triangular markers in Figure 4, panel c). The pattern in

the empirical data is exactly opposite—the ARLs are lower
without feedback, particularly during the formative early pe-
riod (Figure 2, Trials 29–140). The ANCHOR predictions
in High contexts are in agreement with the data. In Low
contexts, both models exhibit compensatory context effects
during the no-feedback blocks. These effects, however, can
be attributed to the main effect of Feedback rather than the
interaction between Context and Feedback. It so happens
that in Low contexts both the main effect and the interaction
deflect the ARLs upwards.

The interaction effects are easier to interpret if we subtract
out the Context factor (Equation 2). Panels b and d in Fig-
ure 4 plot the Assimilation profiles predicted by the two mod-
els. The INST profile never goes negative and shows little
effect of the feedback manipulation. By contrast, ANCHOR
captures the crucial compensatory tendency in the early no-
feedback period (dashed line in panel b). It also reproduces
the interaction pattern in Figure 3, at least qualitatively. The
quantitative fit is not perfect because the parameters were op-
timized with respect to ARL rather than Assimilation.

Qualitative Patterns Consistent
with Each Model

As we have just seen, ANCHOR fits the average response
level profiles somewhat better than INST, but not dramati-
cally better (RMS E = 0.154 vs. 0.173). Neither fit is really
spectacular. Is this sufficient basis to prefer one model over
the other? In addition to goodness of fit, it is also important
to consider the range of qualitative patterns consistent with
each model (Roberts & Pashler, 2000). To that end, the mod-
els were run with a range of parameter values in a simulation
experiment that mirrors Experiment 1. See Appendix C for
details on the simulation method.

Figure 5 plots the ARL profiles predicted by ANCHOR
and INST for a range of values of the so-called history weight
parameter H. The pattern of context effects depended mostly
on this parameter. This is why we explored it systemati-
cally. Reasonable variations of the other parameters did not
introduce any qualitatively new patterns. Recall that mem-
ory retrieval in the models is sensitive to two factors: (a) the
similarity of each memory element to the target and (b) the
base-level activation of each memory element. The history
weight controls the strength of the second factor relative to
the first (see Equation 12 in Appendix A). Memory retrieval
is driven by similarity when H is low, and by the frequency
and recency of past responses when H is high.

INST Predicts Assimilation

The instance-based model predicts assimilative context ef-
fects for all values of H. Panel e in Figure 5 plots the ARL
profiles for H = 0; Panel f plots them for H = .070, which is
a very high value for this parameter. The average response
level shifts upward in high contexts and downward in low
contexts. This assimilative tendency is a parameter-free pre-
diction of the instance-based model. It is discernible for any
parameter setting that generates less than perfect accuracy.
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Figure 4. Fits of the prototype-based (ANCHOR) and instance-based (INST) models. Panels a and c: Average response levels (ARLs).
Each profile is based on 250 simulated runs. Line styles as in Figure 2 (thick lines with triangular markers = High context, thick lines
without markers = Low context, thin lines = Uniform control). RMSE = root mean square error. INST predicts feedback effects in the
wrong direction in High context. Panels b and d: Assimilation profiles corresponding to panels a and c. The vertical grid lines mark
transitions from feedback to no-feedback blocks or vice versa. Line styles as in Figure 3. See text for details.

The assimilative tendency is relatively insensitive to feed-
back. The vertical grid lines in Figure 5 mark transitions
from feedback to no-feedback blocks or vice versa. The
schedule is exactly the same as in Experiment 1. The ARL
profiles are slightly different between feedback-first (solid
lines) and no-feedback-first (dashed lines) runs, but the sign
of the context effect is assimilative in all cases. This repli-
cates the relative insensitivity to feedback in INST’s fits to
the empirical data in Figure 4, panel d.

Figure 6 shows the Assimilation profiles corresponding to
the ARL profiles in Figure 5. The assimilative context ef-
fect is evident from the positive values (Equation 2). INST’s
assimilative tendency tends to increase slightly in the no-
feedback blocks (e.g., trials 140–252 on panel f, solid line).
This is opposite to the direction of the interaction effect in

the empirical data (Figure 3, trials 140–252, solid line).

ANCHOR Is More Flexible
The prototype-based model, on the other hand, can pro-

duce three qualitatively different patterns of context effects
illustrated in Panels a–d of Figure 5. The assimilative influ-
ence of the base-level learning counteracts the compensatory
influence of the competitive learning. When H is high, the
assimilative influence dominates and the average response
levels resemble those of the INST model as illustrated in
Panels d and f in Figure 5. ANCHOR can thus mimic INST.
When H is low, the compensatory influence dominates, but
only during the no-feedback blocks. This produces a strong
context-by-feedback interaction. Panel a illustrates it for the
extreme case of H = 0, which shows the effects of competi-
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Figure 5. Average response levels (ARLs) predicted by the prototype-based (ANCHOR) and instance-based (INST) models. Each panel
reports a batch of runs with history weight H indicated above the panel. The 6 ARL profiles correspond to the 3x2 factorial combinations
of context and feedback. Thin lines: uniform context. Thick lines with triangular markers: high context (frequent long stimuli; upward
shifts in ARL indicate assimilation). Thick lines with no markers: low context (frequent short stimuli; upward shifts indicate compensation).
Solid lines: feedback-first sequences. Dashed lines: no-feedback-first sequences. The vertical grid lines mark transitions from feedback to
no-feedback blocks or vice versa.

tive learning in pure form. Consider the two feedback-first
groups (thick solid lines). Trials 1–140 and 253–364 are
with feedback; Trials 141–252 and 365–476 are without. The
flat segment up to Trial 140 shows that when both learning
mechanisms are silenced, there are no context effects.6 When
feedback is discontinued, the ARL shifts downward in high
context and upward in low context. This compensatory effect
is driven by the inversion rule in competitive learning. When
feedback is reintroduced at Trial 253, it gradually resets the
anchors to their home positions and the ARLs converge back
to the baseline. The no-feedback-first groups show a com-
plementary pattern (thick dashed lines).

The corresponding Assimilation profiles (Figure 6) further
illustrate these points. In particular, panel b demonstrates
that ANCHOR can produce the qualitative pattern in the hu-
man data (Figure 2). When the history weight is such that
base-level learning is allowed to operate but is weaker than
competitive learning, ANCHOR predicts compensation dur-
ing the initial no-feedback segment (dashed line, Trials 29–
140), assimilation during the initial feedback segment (solid
line), and continual context-by-feedback interaction during
the subsequent segments.

Discussion

These qualitative considerations are our main basis for
preferring the anchor-based model. Its superior quantitative
fit reinforces the same conclusion. However, there is an al-
ternative interpretation in terms of response bias (Parducci,
1974). A compensatory context effect can occur when the
observers try to use all scale values equally often. The ob-
served interaction effect can occur when the response bias is
weaker with feedback than without.

The tendency of all ARLs in Experiment 1 to creep up-
ward in the no-feedback blocks also complicates the inter-
pretation of the data. We attributed it to an idiosyncratic fea-
ture of our stimuli. They were equally spaced but did not
form a sequence with zero intercept—Stimulus 1 was not
half as long as Stimulus 2, etc. Even though the instruc-
tions explicitly asked for an interval rather than ratio scale,
some participants may have tried to preserve stimulus ratios
(Stevens, 1957). If this strategy tended to overestimate the
short stimuli more than the long ones, it could give rise to
an upward bias in the average response levels. Our analyses
assume that this bias does not interact with context and thus

6 The flat segment also validates that the estimated ARLs remain
unbiased even when the raw data are collected in skewed contexts.
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Figure 6. Context effects predicted by the prototype-based (ANCHOR) and instance-based (INST) models. Each panel reports a batch of
runs with history weight H indicated above the panel. Based on the data in the corresponding panels of Figure 5. The average response level
in low context [ARL(L)] is subtracted from that in high context [ARL(H)] to measure assimilation. The circles and squares mark blocks
with feedback. INST always predicts assimilation. ANCHOR is consistent with context effects in either direction, modulated by feedback.

can be subtracted out. The Assimilation measure in Equa-
tion 2 depends on this assumption. However, there may be
a weak interaction between the upward bias and context. It
is obvious that Stimuli 2 and 1 are not in a 2:1 ratio but it is
not obvious that Stimuli 9 and 8 are not in a 9:8 ratio. Thus,
the upward bias may be stronger at the low end than the high
end of the scale.

We ran a second experiment with different stimuli and
tighter controls to rule out these alternative interpretations
and test the generalizability of our results.

Experiment 2

Experiment 2 improves on Experiment 1 in three ways.
First and foremost, the overall response-category frequen-
cies are always uniform under the new design. A perfect
responder will press each of the 7 response keys an equal
number of times in each block. This makes it highly unlikely
that response bias plays a significant role in this study. The
context manipulation is preserved, but two different types of
stimuli are mixed in each block, with presentation frequen-
cies skewed in complementary directions. Concretely, there
are motion stimuli and texture stimuli. The participants are
instructed to rate the speed of motion on a scale of 1=“slow-
est” to 7=“fastest” and to rate the coarseness of texture on a

scale of 1=“lowest” to 7=“highest.”
We chose stimulus types that are as different from each

other as possible in order to minimize the cross-talk between
the two tasks in memory. When a motion stimulus is pre-
sented, for example, only motion anchors or instances com-
pete to match it. Those involving textures are too dissimilar
to ever be retrieved. If this is correct, Experiment 2 consists
of two independent replications of Experiment 1.

The third improvement is the introduction of a monetary
bonus contingent on accuracy. The bonus motivates the par-
ticipants to use the interval scale prescribed by the instruc-
tions and to cast aside any a priori preferences for ratio
scales, uniform frequencies, etc.

Method

Observers. Forty-one participants at Ohio State Univer-
sity were paid $6 plus a bonus that varied between $2.50 and
$4.50 depending on their accuracy.

Stimuli and Apparatus. Each motion stimulus consisted of
150 black dots that moved coherently inside a grey circular
aperture. The direction of motion was randomized across tri-
als but all dots on a given trial moved in the same direction.
The speed of each individual dot was constant throughout
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Figure 7. Sample filtered-noise texture stimuli for Experiment 2.
Left: category 1, lowest “coarseness” (shortest wavelength). Right:
category 7, highest “coarseness” (longest wavelength). Each patch
was clipped within a circular aperture with diameter 7 degrees of
visual angle. The orientation was randomized.

the lifetime of the dot and was drawn from a Gaussian distri-
bution (e.g., Watamaniuk, Sekuler, & Williams, 1989). The
mean of this Gaussian was 6, 7, 8, . . . , 12 degrees per second
for categories 1, 2, 3, . . . , 7, respectively.7 The standard devi-
ation of the Gaussian was proportional to the mean (1 deg/sec
for the slowest and 2 deg/sec for the fastest category). The
participants were instructed to rate the average speed of the
cloud of dots. The diameter of the aperture was 7 degrees of
visual angle. As dots exited the aperture, they were replaced8

with freshly sampled dots.
The texture stimuli were filtered-noise patches (Figure 7).

Seven filters Hk were defined for the 7 categories k. Each
filter had a Gaussian cross-section in the frequency domain:

Hk( fx, fy) = Nk exp

−1
2

 ( fx − ck)2

σ2
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+
f 2
y

σ2
y,k


+

Nk exp
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+
f 2
y

σ2
y,k




(3)

Equation 3 describes the amplitude profile of a Ga-
bor wavelet (windowed sinusoidal grating) with spatial fre-
quency ck (Graham, 1989). The normalization constants Nk
were chosen so that all filters had equal spectral energy. To
generate one texture from a given category k, the algorithm
generated a fresh matrix of iid Gaussian noise and applied
the corresponding filter Hk. The center frequencies ck were
inversely related to the category labels k in a geometric pro-
gression with parameter q = 0.4 octaves (Equation 4). The
“coarseness” of the texture was operationalized as the wave-
length λk = 1/ck. It varied from λ1 ≈ 0.19 to λ7 = 1.0 de-
grees per cycle as illustrated in Figure 7.

ck = 2q(7−k) ≈ 1.32(7−k) (4)

σx,k =
2b − 1

(2b + 1)
√

2 ln 2
ck ≈ .146ck (5)

σy,k =
πθ

360
√

2 ln 2
ck ≈ .333ck (6)

The frequency bandwidth parameter b in Equation 5 con-
trolled the uncertainty in spatial frequency. It was b = 0.5
octaves for all categories (full width at half height, in log-
frequencies). The orientation bandwidth parameter θ in
Equation 6 controlled the uncertainty in orientation. It was
θ = 45 degrees for all9 categories. All textures were gen-
erated at vertical orientation and then rotated at a random
angle.

All stimuli—moving dots and static textures—were gen-
erated in Matlab in real time and presented on a 21” NEC
AccuSync 120 CRT at 96 frames/sec using PsychTool-
box (Brainard, 1997) A software lookup table defined 255
evenly spaced luminance levels between Lmin ≈ 2 cd/m2 and
Lmax ≈ 118 cd/m2. The displays were viewed binocularly
from a chin rest placed 93 cm from the monitor.

Procedure. The participants were instructed that each
block consisted of an equal number of motion and texture
trials presented in random order and that there were feedback
and no-feedback blocks. Nothing was mentioned about pre-
sentation frequencies within either stimulus type. The task
was to rate the average speed of motion and the “coarseness”
of the texture with a number from 1 to 7. A brief demonstra-
tion presented examples of the slowest and fastest motion and
of the finest and coarsest texture. The participants earned one
bonus point for each correct answer. The current cumulative
bonus was displayed above the fixation dot at all times except
during the no-feedback blocks.

Each trial began with a brief beep. The stimulus was pre-
sented in the middle of the screen against gray background
500 ms later and continued until the observer pressed a key
from 1 to 7. Invalid keys were ignored. Then the screen
was cleared and a big white feedback digit (or an “X” in no-
feedback blocks) appeared for 1100 ms. Each session lasted
about 50 minutes and consisted of 700 trials.

Design. Block 1 had 28 trials; Blocks 2–13 had 56 trials.
Block 1 presented 2 motions and 2 textures of each category,
with feedback, in random order. The presentation frequen-
cies in subsequent blocks varied in complementary ways de-
pending on context: Fast-Low (FL) blocks contained 1, 2, 3,
. . . , 7 presentations of motion stimuli 1, 2, 3, . . . , 7, respec-
tively, and 7, 6, 5, . . . , 1 presentations of texture stimuli 1,
2, 3, . . . , 7. In Slow-High (SH) blocks the skewness of the
two stimulus types was reversed. Note that a perfect respon-
der would press each of the 7 response keys 8 times in each
block regardless of context.

The participants were randomly assigned to 4 groups.
Groups 1 (Fast-Low1) and 2 (Fast-Low2) presented 1 uni-
form block followed by 12 FL blocks. Groups 3 (Slow-

7 We could not use a sequence with zero intercept because a
parallax-like effect made the dot clouds appear to rotate rather than
move sideways when the average speed was too low.

8 Care was taken to correct the attrition bias that occurred as fast
dots exited the aperture more often than slow dots.

9 The standard deviation σy,k in Equation 6 is proportional to the
central frequency ck for technical reasons involving a conversion
from polar to Cartesian coordinates (Graham, 1989).
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Figure 8. Average response levels for the motion-speed ratings in
Experiment 2. Each line plots the mean of the individual profiles in
the corresponding group. Groups 3 and 4: slow context (frequent
slow stimuli; upward shifts indicate compensation). Groups 1 and
2: fast context (frequent fast stimuli; upward shifts indicate assim-
ilation). The vertical grid lines mark transitions from feedback to
no-feedback blocks or vice versa. Groups 1 and 3: feedback on
Trials 1–98, 183–266. Groups 2 and 4: feedback on Trials 1–14,
99–182, 267–350.

High1) and 4 (Slow-High2) presented 1 uniform block fol-
lowed by 12 SH blocks. The feedback-first Groups 1 and 3
gave veridical feedback on blocks 1–4, 8–10 and no feedback
on blocks 5–7, 11–13. The no-feedback-first Groups 2 and 4
gave no feedback on blocks 2–4, 8–10 and veridical feedback
on blocks 1, 5–7, 11–13.

Dependent Variable. The dependent variable is the same
as in Experiment 1—the average response level (ARL) cal-
culated according to Equation 1. The two stimulus types are
processed separately: 350 motion and 350 texture trials per
participant. Each stimulus-response sequence is segmented
into 9 nonoverlapping periods. Period 1 covers the initial
uniform block and has 14 trials (per stimulus type). Period 2
covers block 2 and the first half of block 3 and has 42 tri-
als. Period 3 covers the second half of block 3 and the en-
tirety of block 4 and also has 42 trials. Periods 4 through
9 cover blocks 5 through 13 in an analogous fashion, each
period spanning a block and a half and having 42 trials. The
coefficients R0 and a of the Stevens function are estimated
by linear10 regression from the 42 stimulus-response pairs in
each period. The average response level for this period is
ARL = R0 + 4a, where 4 is the code of the middle stimulus.
This procedure converts the raw data to two profiles—9 mo-
tion ARLs and 9 texture ARLs.

Results and Discussion

Figures 8 and 9 plot the mean ARL profiles for the motion-
speed and texture-coarseness rating task, respectively. The
line styles are the same as in Figure 2 to facilitate compar-
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Group 1: Low1
Group 3: High1
Group 2: Low2
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Figure 9. Average response levels for the texture-coarseness rat-
ings in Experiment 2. Each line plots the mean of the individual pro-
files in the corresponding group. Groups 1 and 2: low context (fre-
quent fine stimuli; upward shifts indicate compensation). Groups 3
and 4: high context (frequent coarse stimuli; upward shifts indicate
assimilation). The vertical grid lines mark transitions from feedback
to no-feedback blocks or vice versa. Groups 1 and 3: feedback on
Trials 1–98, 183–266. Groups 2 and 4: feedback on Trials 1–14,
99–182, 267–350.

ison with the line-length rating task of Experiment 1. The
data show strong context effects, this time in a compensatory
direction. The average response levels in Fast motion context
(lines with triangular markers in Figure 8) are consistently
lower than those in Slow context (lines with no markers).
The compensatory effect is equally clear in the texture data—
the ARLs in High (or coarse) context are lower than those in
Low context (Figure 9). Both context effects are highly sig-
nificant (motion F(1, 37) = 21.4, p < .001, η2

p = .37; texture
F(1, 37) = 34.4, p < .001, η2

p = .48; mixed-design ANOVA
as in Experiment 1).

This compensatory context effect falsifies the INST model
(cf. Figure 5e,f) and challenges instance-based theories in
general. The response-bias explanation does not seem to an-
swer this challenge adequately. While it is impossible to rule
out this explanation completely, it depends on the implausi-
ble assumption that the observers can keep separate counts
of the response frequencies for the two stimulus types. Even
if we assume for the sake of the argument that the partici-
pants could implement such bias and were willing to forfeit
valuable bonus points in the process, it still remains unclear
why the compensatory tendency is so much stronger in Ex-
periment 2 than in Experiment 1.

ANCHOR, on the other hand, can generate compensatory
context effects as discussed above. In fact, the empirical pro-
files in Figures 8 and 9 are very similar to the ANCHOR

10 The correlation between the group-averaged ratings and the
correct labels is 0.998 for motion and 0.997 for texture. Thus, the
Stevens functions seem locally linear for our stimulus ranges.
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profile in Figure 5a. The base-level activations in ANCHOR
(and ACT–R more generally) have a strong but transient re-
cency component (Equation 10 in Appendix A; see Petrov,
2006, for illustrative plots of the activation dynamics). When
trials of different types are mixed in a block, each type di-
lutes the residual activation of the other. Thus, ANCHOR
predicts weaker assimilation in heterogenous blocks than in
homogenous blocks. This is exactly what we found—a com-
pensatory effect in Experiment 2 and an assimilative effect
in Experiment 1. Modeling this phenomenon in detail is a
promising topic for future research.

Experiment 2 replicates the Context by Feedback interac-
tion, particularly in the motion data. The zig-zag interaction
pattern is most pronounced in Figure 8. Consider trials 15–
98 for concreteness. With feedback (Groups 1 and 3, solid
lines), there is hardly any context effect during this period.
Without feedback (Groups 2 and 4, dashed lines), there is a
massive compensatory effect. When feedback is discontin-
ued in Groups 1 and 3, their ARLs diverge (trials 99–182);
whereas when feedback is introduced in Groups 2 and 4, their
ARLs converge.

The Context by Feedback interaction is statistically signif-
icant in the motion data (F(1, 37) = 28.6, p < .001, η2

p = .44)
but not in the texture data (F(1, 37) < 1). This is driven by
a general tendency of the texture ARLs to drift downwards
during the no-feedback periods. The significant main effect
of the Feedback factor (texture F(1, 37) = 15.0, p < .001,
η2

p = .29) obscures the Context by Feedback interaction. The
predicted zig-zag pattern is still evident in the High groups in
Figure 9 (triangular markers). In the Low groups (no mark-
ers), however, the pattern is eliminated, even reversed per-
haps. Recall that Experiment 1 produced analogous results,
but there the ARLs tended to drift upwards without feed-
back. Thus, the interaction was strong in the Low groups
in Figure 2 and weak in the High groups. Here it is the other
way around. That a main effect can mask an interaction is
well documented in the statistical literature (e.g., Keppel &
Wickens, 2004). The length ARLs drifted upwards, the tex-
ture ARLs downwards. The motion ARLs are just right (no
significant effect of Feedback, F(1, 37) < 1) and reveal the
interaction in purest form.

We subtracted the ARL profiles obtained in complemen-
tary contexts (Equation 2) to calculate the Assimilation pro-
files in Figures 10 and 11. The overall compensatory context
effect is evident from the consistently negative values. Note
that Assimilation ≈ 0 during the initial uniform block (trials
1–14). The motion profile (Figure 10) is strikingly similar
to the ANCHOR profile for low history weights (Figure 6a).
The zig-zag pattern of Figure 3 is clearly replicated. The
pattern is also discernible in the texture data (Figure 11).

Figure 11 contains two anomalous points in the feedback-
first condition (solid line, trials 15–98). These are incompat-
ible with ANCHOR (or INST). Tracing the problem back to
Figure 9, it seems that the corresponding ARLs for Group 1
(Low1) are anomalously high (or that the subsequent ARLs
have drifted downwards as discussed above). We have no
good explanation for this. Given the noise in the data, how-
ever, it is not surprising to find two anomalous values among
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Figure 10. Context effects in the motion-speed rating task from
Figure 8. The average response level in slow context [ARL(Slow)]
is subtracted from that in fast context [ARL(Fast)] to measure as-
similation. The vertical grid lines mark transitions from feedback
to no-feedback blocks or vice versa. The consistently negative val-
ues indicate a compensatory context effect. It is stronger in the
no-feedback periods (plain lines) than in the feedback periods (cir-
cles and squares). Both effects are predicted by the prototype-based
model but inconsistent with the instance-based model.

the 117 points in Figures 2, 8, and 9. The compensatory ef-
fect during the late feedback blocks in Figure 9 are probably
carried over from the preceding no-feedback blocks.

In conclusion, Experiment 2 replicated and improved
upon Experiment 1. The motion data are particularly con-
vincing. The compensatory main effect of Context and the
Context by Feedback interaction rule out INST as a viable
model of human category rating. ANCHOR, on the other
hand, offers a natural and elegant account of this complex
and interlocking behavioral pattern.

General Discussion
We presented evidence of assimilative (Experiment 1) and

compensatory (Experiment 2) context effects in category rat-
ing with diverse stimulus sets. External feedback can reverse
the direction of the context effect. These findings constrain
the theory of direct psychophysical scaling and contribute to
our understanding of how ratings are produced by human ob-
servers. They also constrain the theory of categorization.

Prototype- and exemplar-based theories make distinct pre-
dictions about the direction of context effects and their mod-
ulation by feedback. Computer simulations with representa-
tive members of each model class indicated that prototype-
based models can exhibit both assimilatory and compen-
satory context effects, whereas instance-based models must
always assimilate. Thus, the unitary constraint on the rep-
resentational flexibility of the system can increase its behav-
ioral flexibility via the inversion rule (Figure 1). Prototype-
based categories cannot increase their coverage on the mag-
nitude continuum without decreasing coverage on the oppo-
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Figure 11. Context effects in the texture-coarseness rating
task from Figure 9. The average response level in low context
[ARL(Low)] is subtracted from that in high context [ARL(High)]
to measure assimilation. The consistently negative values indi-
cate a compensatory context effect, which is inconsistent with the
instance-based model.

site side. This generates a compensatory tendency that coun-
teracts the natural assimilative tendency in skewed contexts.
These opposing forces can produce in ANCHOR an overall
context effect in either direction (Figure 5).

Does this mean that ANCHOR is just too flexible and can
fit anything but explain nothing (Roberts & Pashler, 2000)?
The answer is an emphatic no because ANCHOR makes
principled predictions about how context interacts with other
variables (Petrov & Anderson, 2005). First, the assimila-
tion originates in the base-level activation mechanism and
hence any manipulation that weakens the activations should
reduce the assimilative tendency in the data. This is what
we found in Experiment 2. Mixing two stimulus types in
the same block dilutes the recency component of the base-
level activations of the anchors for each type. Thus, the be-
havioral pattern resembles the ANCHOR pattern generated
with low history weight (Figure 5a). Second, the compen-
sation originates in the competitive learning mechanism and
hence any manipulation that constrains the anchor locations
should reduce the compensatory tendency in the data. Exter-
nal feedback is one such manipulation. Petrov and Ander-
son (2005) demonstrated compensatory effects without feed-
back and assimilative effects with feedback. These studies
manipulated context within and feedback between subjects.
Here we replicate this result with the complementary design.
ANCHOR, but not INST, makes a parameter-free prediction
that the compensatory tendency in skewed contexts should
be suppressed by feedback, leading to a characteristic zig-
zag pattern. This is exactly what was observed.

In conclusion, the evidence suggests that category rating
is based on unitary representations. Prominent theorists (e.g.,
Nosofsky & Johansen, 2000; Nosofsky & Zaki, 2002) have
argued that people use instance-based representations in all

categorization tasks. The present results identify a limit to
such all-encompassing statements. Instance-based theories,
despite their spectacular success in many other tasks, do not
seem applicable to category rating without feedback.

Potential Challenges to Our Conclusions

INST retrieves a single exemplar per trial. While such
single-exemplar proposals are not unprecedented (e.g., En-
nis, Palen, & Mullen, 1988), most instance-based theories
posit that the probability to classify a stimulus under a cat-
egory is proportional to its aggregate similarity to all prior
instances of this category. Thus, critics might argue that
the failure of INST to fit our data does not constrain main-
stream instance-based theory. A straightforward response to
such criticism would be to fit the Generalized Context Model
(GCM, Nosofsky, 1986) to our data. The problem is that
GCM cannot do the no-feedback task. Without the stabiliz-
ing influence of a correction mechanism, a winner-takes-all
dynamics sets in during the no-feedback blocks (Petrov &
Anderson, 2005). The correction mechanism requires the
retrieval of an individuated memory element on each trial.
The corrections are based on the discrepancy between the re-
membered location and the target location (see Equation 14
in Appendix A).

All categorization models make representation assump-
tions and retrieval assumptions (see Ashby, 1992, for an ex-
cellent review). Our answer to the above criticism is that
INST does embody the representation assumption central to
all instance-based theories. It represents each category as
a collection of instances in memory. Any model with non-
unitary representations will fail to account for the compen-
satory tendencies in our data for the same reason that INST
fails. The fundamental problem is that similarities always
add (see Equation 17 in Appendix A) and thus a category can
never lose strength in some region as it accrues a member in
another region.

GCM has been extended to incorporate the idea that dis-
similarity may play a role in categorization decisions. The
similarity-dissimilarity model (SD-GCM, Stewart & Brown,
2005) assumes that the evidence for a category is the summed
similarity to instances of that category plus the summed dis-
similarity to instances of the opposite category. SD-GCM is
motivated by the category contrast effect: The classification
of a borderline stimulus is more accurate when preceded by
a distant member of the opposite category than when it was
preceded by a distant member of the same category (Stewart
et al., 2002; Stewart & Brown, 2004). The problem with this
approach is that it only works for binary classifications. At-
tempts to extend it to the rating task lead to highly implausi-
ble predictions. For example, SD-GCM predicts a strong ten-
dency to respond 1 in High contexts because any short stim-
ulus will be very dissimilar to the numerous long exemplars
in memory. A further problem with SD-GCM is its apparent
inability to account for the interaction between Context and
Feedback that is the critical feature of our data.

In a different experimental paradigm, Smith and Minda
(1998, 2000, 2002; Minda & Smith, 2001, 2002) docu-
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mented many circumstances in which prototype models out-
perform instance-based models. Their results were chal-
lenged in various ways (Nosofsky, 2000; Nosofsky & Jo-
hansen, 2000; Nosofsky & Zaki, 2002; Stanton et al., 2002;
Zaki et al., 2003). One controversy involves the response-
scaling parameter γ in instance-based models (Smith &
Minda, 1998, 2002; Myung et al., 2007). Nosofsky and Zaki
(2002) argued that models without such parameter are artifi-
cially constrained. As our INST model lacks this particular
parameter, our conclusions may seem vulnerable to the same
criticism. They are not because they rest on qualitative pat-
terns in the data rather than goodness of fit. INST’s funda-
mental limitation in our paradigm is its inability to produce
compensatory context effects. This is a structural limitation
that cannot be circumvented by the introduction of a param-
eter that makes responding more or less deterministic.

Prototype models have also been challenged for being
prone to overfitting (Olsson et al., 2004). Our simulations in-
dicate that ANCHOR can indeed produce a broader range of
qualitative patterns than INST (Figure 5). In that regard, the
important outcome of the present experiments is that INST
cannot fit the data, not that ANCHOR can. Note also that
some potential outcomes could have falsified ANCHOR too.
For example, it cannot fit compensatory context effects dur-
ing Trials 29–140 in the feedback-first condition.

The Importance of Inductive Bias

It is not surprising to find evidence for unitary represen-
tations in category rating because they match the statistical
structure of the target categories. Assigning a label to a
novel exemplar is a form of induction. As such, it neces-
sarily depends on a priori assumptions about the structure
of categories (Hume, 1748/1962). Every representational
scheme implicitly embodies such inductive bias. The foun-
dational assumption of all memory-based classifiers is that
similar items belong to the same category. In statistical ter-
minology, the similarity-based inductive bias amounts to the
assumption that categories have smooth probability density
functions (Ashby & Alfonso-Reese, 1995; Nosofsky, 1990).
Instance-based representations are equivalent to kernel den-
sity estimators and make no assumptions besides smoothness
(Ashby & Alfonso-Reese, 1995). Prototype representations
embody the additional assumptions of unimodality and sym-
metry. These are the conditions in which a distribution is
well represented by its mean. In environments in which these
assumptions are satisfied, the bias speeds up learning, im-
proves classification accuracy, reduces the need for external
feedback, and increases robustness. This is the case in cat-
egory rating, where categories are contiguous regions on a
unidimensional continuum and there are no exceptions. A
prototype representation anticipates the regularities in these
simple domains (Huttenlocher et al., 2000).

Flannagan, Fried, and Holyoak (1986) present convincing
evidence that human observers are biased in favor of uni-
modal distributions. It was faster to learn a unimodal than a
bimodal category. Also, subjects in the early stages of learn-
ing a bimodal category responded as if it were unimodal.

The compensatory tendencies in our data suggest an in-
ductive bias for symmetry. Prototype-based representa-
tions enforce such symmetry; instance-based representations
merely allow it. A bias for symmetry is beneficial for our
task, even in nonuniform contexts, assuming symmetric per-
ceptual noise. This is because each category in our exper-
iment consists of a single stimulus. With feedback, both
prototype- and instance-based systems converge to symmet-
ric representations and thus behave identically. Without feed-
back, however, the systems’ own mistakes violate the sym-
metry of categories. In skewed contexts, more misclassifi-
cations are made toward the frequent end of the continuum.
This skews the representations in INST but not in ANCHOR
where the unitary constraint enforces symmetry and thereby
counteracts the destabilizing contextual influence.

Analyzing the two classes of systems in terms of their in-
ductive biases helps explain why the decisive test occurs dur-
ing the no-feedback blocks. The absence of feedback forces
the system to rely on prior knowledge. Strongly biased sys-
tems have an advantage over weakly biased systems, pro-
vided of course that the bias matches the structure of the en-
vironment. Prototype-based systems have the strongest bias,
followed by decision-bound systems, followed by instance-
based systems (Ashby & Alfonso-Reese, 1995). All doc-
umented failures of prototype-based models (e.g., Ashby &
Gott, 1988; Ashby & Maddox, 1992, 1993; Medin & Shaffer,
1978; Nosofsky, 1992; Nosofsky et al., 1994; Nosofsky &
Zaki, 2002) involve tasks that violate one or more prototype
assumptions. The strong inductive bias of prototype-based
systems is counterproductive in those cases.

Long training sessions with feedback reduce the impor-
tance of prior knowledge. In Bayesian terms, the likelihood
dominates the prior. Systems with non-informative priors
can behave optimally in such circumstances and instance-
based models provide excellent accounts of the asymptotic
strategy. This is consistent with converging evidence for “a
progression from a strong reliance on prototypes to a strong
reliance on exemplar memorization” (Smith & Minda, 1998,
p. 1412). In that regard, it is notable that ANCHOR outper-
forms INST after more than 400 presentations of our seven
stimuli. We attribute this to the confusability inherent in uni-
dimensional perceptual continua.

Such behavioral data are very informative but should be
interpreted with care because the link between behavior and
the underlying representation is not always straightforward.
In the current study, for example, the model with greater rep-
resentational flexibility (INST) has lesser behavioral flexi-
bility. The study of Nosofsky and Stanton (2005) is an-
other example. It involved two-dimensional stimuli (Mun-
sell color chips), binary classification, and probabilistic feed-
back for certain “critical” stimuli. In an ingenious manipula-
tion, both categories had asymmetrical, kidney-shaped den-
sities but the asymmetry of Category A mirrored that of Cat-
egory B so that the optimal decision bound was still linear.
Thus, a prototype-based classifier would maximize perfor-
mance even though it misrepresented the kidney-shaped den-
sities. The inductive bias of a prototype representation is that
each individual category is symmetrical, not that the constel-
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lation of categories is symmetrical. Only an instance-based
scheme can represent kidney-shaped categories. Ironically,
these accurate representations predict slower and less accu-
rate responses to the critical stimuli in Nosofsky and Stan-
ton’s (2005) configuration. The data favored the instance-
based model. One interpretation of this finding is that the
objective of the human system is not only to optimize per-
formance on the current task but also to build an accurate
internal model of the environment in anticipation of future
tasks. Such combination of task-driven and model learning
has been shown to generalize better than purely task-driven
learning in neural networks (O’Reilly, 2001).

Related Research

Cohen, Nosofsky, and Zaki (2001) manipulated category
variability in ways similar to our context manipulation. An
equidistant transfer stimulus was more likely to be classi-
fied into a low-variability than a high-variability category.
This is analogous to the compensatory context effects in our
paradigm and is consistent with ANCHOR. However, fur-
ther increases of the variance of the high-variability category
increased the probability to classify the transfer stimulus into
it, which is consistent with neither ANCHOR nor INST.
Subsequent experiments revealed complications (Stewart &
Chater, 2002). This is a topic for further investigation.

There is middle ground between prototype- and instance-
based classifiers. It is to store several memory elements per
category but significantly fewer than the total number of ex-
emplars encountered so far (e.g., Busemeyer et al., 1984;
Homa, Dunbar, & Nohre, 1991; Smith & Minda, 2000). One
advanced model along those lines is SUSTAIN (Love et al.,
2004). It creates new elements (or clusters) only when a sur-
prise occurs. With feedback, that is when the teacher cor-
rects the model’s response; without feedback, a surprise oc-
curs when the similarity between a new item and any exist-
ing cluster is less than a threshold parameter. By varying
this threshold, SUSTAIN can enforce the unitary constraint
to varying degrees. The model begins with simple represen-
tations and introduces complexity only when necessary. It is
designed for multidimensional spaces and is equipped with
the requisite attentional machinery. It is not well equipped
to handle context effects in category rating but can be ex-
tended with base-level activations and a correction mecha-
nism. Would such an extended version be compatible with
our data? The answer is no. To capture the compensatory
context effects, SUSTAIN must keep a single cluster per re-
sponse category. This may seem a simple matter of setting
the recruitment threshold high. However, a problem occurs
during the feedback blocks. SUSTAIN will make mistakes
and be “surprised” by the feedback. Many mistakes will be
blamed on the decision procedure but some trace back to ir-
reducible perceptual overlap (B. Love, personal communica-
tion, 30 April 2008). These irreducible surprises will recruit
multiple clusters for every response category. Thus, SUS-
TAIN seems bound to behave as an instance-based model in
all tasks with perceptually confusable stimuli.

The Relative Judgment Model (RJM, Stewart et al., 2005)

and the Memory and Contrast model (MAC, Stewart et al.,
2002; Stewart & Brown, 2004) emphasize the importance
of a comparison process that calculates differences between
magnitudes. We agree that relative judgments are important
and incorporate them in ANCHOR’s correction mechanism.
Memory retrieval in ANCHOR is based on absolute magni-
tudes whereas corrections are based on differences. The in-
terplay between these two factors allows ANCHOR to work
without external feedback, which neither RJM nor MAC can
do.

This article focused on the distinction between prototype
and instance-based models. Decision bound models are an-
other prominent class in the categorization literature (e.g.,
Ashby & Gott, 1988; Ashby & Maddox, 1993; Ashby &
Townsend, 1986; Maddox & Ashby, 1993; Treisman &
Williams, 1984). Under some reasonable assumptions, pro-
totype models are equivalent to minimum-distance classifiers
with linear bounds (Ashby & Gott, 1988; Ashby & Alfonso-
Reese, 1995). The strict mathematical proof does not apply
to ANCHOR because of its correction mechanism, which is
an innovation relative to all decision bound theories. Still,
all these theories seem consistent with the outcome of the
present experiment—that category rating is based on uni-
tary representations. With unidimensional stimuli, decision
bounds are just points on the continuum and the system needs
N − 1 criteria for N response categories (Torgerson, 1958;
Treisman & Williams, 1984). Thus, the complexity of the in-
ternal representation is tied to the number of categories rather
than the number of trials. In that sense, decision bounds are
unitary representations consistent with our data. The Cate-
gory Density Model (Fried & Holyoak, 1984) formalizes this
idea. It assumes that category representations are (multivari-
ate) Gaussians and incrementally updates the means and vari-
ances of these Gaussians. Decision bounds are then derived
from likelihood ratios (Ashby & Townsend, 1986; Fried &
Holyoak, 1984).

A growing number of theories posit two or more systems
for categorization (e.g., Ashby & Ell, 2001; Ashby et al.,
1998; Erickson & Kruschke, 1998; Nosofsky et al., 1994).
A common assumption in these theories is that the different
systems compete to categorize a given stimulus. ANCHOR
also has multiple mechanisms but they cooperate rather than
compete. ANCHOR’s memory system is implicit, whereas
its correction mechanism is explicit (cf. Ashby et al., 1998).
The former is automatic, tracks the statistics of the environ-
ment, and is responsible for the “first guess” on each trial.
Human observers, however, often second-guess themselves.
This is captured by ANCHOR’s explicit correction strategy.
It embodies knowledge about the number and order of cat-
egories and generates the stimulus-response homomorphism
that is the defining feature of scaling. The cooperative in-
teraction between the implicit and explicit components in
ANCHOR is crucial for its ability to unfold the scale and
maintain stability in non-uniform and non-stationary envi-
ronments without feedback (Petrov & Anderson, 2005).



18 PETROV, A.

References

Anderson, J. R., & Lebiere, C. (1998). The atomic components of
thought. Mahwah, NJ: Lawrence Erlbaum Associates.

Anderson, J. R., & Milson, R. (1989). Human memory: An adaptive
perspective. Psychological Review, 96(4), 703–719.

Ashby, F. G. (1992). Multidimensional models of categorization.
In F. G. Ashby (Ed.), Multidimensional models of perception
and cognition (pp. 449–483). Hillsdale, NJ: Lawrence Erlbaum
Associates.

Ashby, F. G., & Alfonso-Reese, L. A. (1995). Categorization as
probability density estimation. Journal of Mathematical Psy-
chology, 39, 216–233.

Ashby, F. G., Alfonso-Reese, L. A., Turken, A. U., & Waldron,
E. M. (1998). A neuropsychological theory of multiple systems
in category learning. Psychological Review, 105(3), 442–481.

Ashby, F. G., & Ell, S. W. (2001). The neurobiology of human
category learning. Trends in Cognitive Sciences, 5(5), 204–210.

Ashby, F. G., & Gott, R. E. (1988). Decision rules in the percep-
tion and categorization of multidimensional stimuli. Journal of
Experimental Psychology: Learning, Memory, and Cognition,
14(1), 33–53.

Ashby, F. G., & Maddox, W. T. (1992). Complex decision rules
in categorization: Contrasting novice and experienced perfor-
mance. Journal of Experimental Psychology: Human Perception
and Performance, 18(1), 50–71.

Ashby, F. G., & Maddox, W. T. (1993). Relations between pro-
totype, exemplar, and decision bound models of categorization.
Journal of Mathematical Psychology, 37, 372–400.

Ashby, F. G., & Townsend, J. T. (1986). Varieties of perceptual
independence. Psychological Review, 93(2), 154–179.

Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision,
10, 433–436.

Busemeyer, J. R., Dewey, G. I., & Medin, D. L. (1984). Eval-
uation of exemplar-based generalization and the abstraction of
categorical information. Journal of Experimental Psychology:
Learning, Memory, and Cognition, 10, 638–648.

Chase, S., Bugnacki, L. D., Braida, L. D., & Durlach, N. I. (1983).
Intensity perception. XII. Effect of presentation probability on
absolute identification. Journal of the Acoustical Society of
America, 73(1), 279–284.

Cohen, A. L., Nosofsky, R. M., & Zaki, S. R. (2001). Category vari-
ability, exemplar similarity, and perceptual classification. Mem-
ory & Cognition, 29(8), 1165–1175.

Ennis, D. M., Palen, J. J., & Mullen, K. (1988). A multidimen-
sional stochastic theory of similarity. Journal of Mathematical
Psychology, 32, 449-465.

Erickson, M. A., & Kruschke, J. K. (1998). Rules and exemplars in
category learning. Journal of Experimental Psychology: Gen-
eral, 127, 107–140.

Flannagan, M. J., Fried, L. S., & Holyoak, K. J. (1986). Dis-
tributional expectations and the induction of category structure.
Journal of Experimental Psychology: Learning, Memory, and
Cognition, 12(2), 241–256.

Fried, L. S., & Holyoak, K. J. (1984). Induction of category dis-
tributions: A framework for classification learning. Journal of
Experimental Psychology: Learning, Memory, and Cognition,
10(2), 234–257.

Graham, N. V. (1989). Visual pattern analyzers. New York: Oxford
University Press.

Hastie, R., & Dawes, R. M. (2001). Rational choice in an uncer-
tain world: The psychology of judgment and decision making.
Thousand Oaks, CA: Sage Publications.

Homa, D., Dunbar, S., & Nohre, L. (1991). Instance frequency,
categorization, and the modulating effect of experience. Journal
of Experimental Psychology: Learning, Memory, and Cognition,
17, 444-458.

Hume, D. (1962). Enquiry concerning human understanding (2nd
ed.; L. A. Selby-Bigge, Ed.). Oxford: Oxford University Press.
(Original work published 1748)

Huttenlocher, J., Hedges, L. V., & Vevea, J. L. (2000). Why do
categories affect stimulus judgment? Journal of Experimental
Psychology: General, 129(2), 220–241.

Jones, M., Love, B. C., & Maddox, W. T. (2006). Recency ef-
fects as a window to generalization: Separating decisional and
perceptual sequential effects in category learning. Journal of
Experimental Psychology: Learning, Memory, and Cognition,
32(3), 316–332.

Keppel, G., & Wickens, T. D. (2004). Design and analysis: A re-
searcher’s handbook (4th ed.). Upper Saddle River, NJ: Prentice
Hall.

Kruschke, J. K. (1992). ALCOVE: An exemplar-based connection-
ist model of category learning. Psychological Review, 99(1),
22–44.

Love, B. C., Medin, D. L., & Gureckis, T. M. (2004). SUSTAIN:
A network model of category learning. Psychological Review,
111(2), 309–332.

Maddox, W. T., & Ashby, F. G. (1993). Comparing decision bound
and exemplar models of categorization. Perception & Psycho-
physics, 53, 49–70.

Marks, L. E. (1993). Contextual processing of multidimensional
and unidimensional auditory stimuli. Journal of Experimental
Psychology: Human Perception and Performance, 19(2), 227-
249.

The MathWorks. (2004). Optimization Toolbox, version 3. For use
with MATLAB [Computer software manual]. Natick, MA: The
MathWorks, Inc.

Medin, D. L., & Shaffer, M. M. (1978). Context theory of classifi-
cation learning. Psychological Review, 85, 207–238.

Minda, J. P., & Smith, J. D. (2001). Prototypes in category learn-
ing: The effects of category size, category structure, and stimu-
lus complexity. Journal of Experimental Psychology: Learning,
Memory, and Cognition, 27, 775–799.

Minda, J. P., & Smith, J. D. (2002). Comparing prototype-based and
exemplar-based accounts of category learning and attentional al-
location. Journal of Experimental Psychology: Learning, Mem-
ory, and Cognition, 28, 275–292.

Myung, J. I., Pitt, M. A., & Navarro, D. J. (2007). Does response
scaling cause the generalized context model to mimic a proto-
type model? Psychonomic Bulletin & Review, 14, 1043–1050.

Nosofsky, R. M. (1986). Attention, similarity, and the
identification-categorization relationship. Journal of Experi-
mental Psychology: General, 115(1), 39–57.

Nosofsky, R. M. (1988). Similarity, frequency, and category rep-
resentations. Journal of Experimental Psychology: Learning,
Memory, and Cognition, 14(1), 54–65.

Nosofsky, R. M. (1990). Relations between exemplar-similarity
and likelihood models of classification. Journal of Mathemati-
cal Psychology, 34, 393–418.

Nosofsky, R. M. (1991). Tests of an exemplar model for relating
perceptual classification and recognition memory. Journal of
Experimental Psychology: Human Perception and Performance,
17(1), 3–27.

Nosofsky, R. M. (1992). Exemplars, prototypes, and similar-
ity rules. In A. F. Healy, S. M. Kosslyn, & R. M. Shiffrin
(Eds.), From learning theory to connectionist theory: Essays in



PROTOTYPES IN CATEGORY RATING 19

honor of William K. Estes, Vol. 1 (pp. 149–167). Hillsdale, NJ:
Lawrence Erlbaum Associates.

Nosofsky, R. M. (1997). An exemplar-based random-walk model of
speeded categorization and absolute judgment. In A. A. J. Mar-
ley (Ed.), Choice, decision, and measurement: Essays in honor
of R. Duncan Luce (pp. 347–365). Mahwah, NJ: Lawrence Erl-
baum Associates.

Nosofsky, R. M. (2000). Exemplar representation without general-
ization? Comment on Smith and Minda’s (2000) “Thirty catego-
rization results in search of a model”. Journal of Experimental
Psychology: Learning, Memory, and Cognition, 26(6), 1735–
1743.

Nosofsky, R. M., & Johansen, M. K. (2000). Exemplar-based ac-
counts of “multiple-system” phenomena in perceptual catego-
rization. Psychonomic Bulletin & Review, 7(3), 375–402–233.

Nosofsky, R. M., & Palmeri, T. J. (1997). An exemplar-based ran-
dom walk model of speeded classification. Psychological Re-
view, 104(2), 266–300.

Nosofsky, R. M., Palmeri, T. J., & McKinley, S. C. (1994). Rule-
plus-exception model of classification learning. Psychological
Review, 101(1), 53–79.

Nosofsky, R. M., & Stanton, R. D. (2005). Speeded classifica-
tion in a probabilistic category structure: Contrasting exemplar-
retrieval, decision-boundary, and prototype models. Journal of
Experimental Psychology: Human Perception & Performance,
31(3), 608–629.

Nosofsky, R. M., & Zaki, S. R. (2002). Exemplar and prototype
models revisited: Response strategies, selective attention, and
stimulus generalization. Journal of Experimental Psychology:
Learning, Memory, and Cognition, 28(5), 924–940.

Olsson, H., Wennerholm, P., & Lyxzèn, U. (2004). Exemplars, pro-
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Appendix A
Model Equations and Parameters

ANCHOR and INST are governed by a set of mathemati-
cal equations that define conditional probability distributions
of the following five variables: stimulus S , target magni-
tude M, anchors Ai, correction I, and overt response R. The
perceptual processing in both models is described by Equa-
tion 7 that converts the stimulus intensity S into an internal
magnitude M. The exponent n = 1.0 is determined from
Stevens power law for line length11 (Stevens, 1957; Stevens
& Galanter, 1957). The scaling factor a is set arbitrarily to
1/1000 so that magnitudes fall in the 0–1 range. The per-
ceptual noise εp is drawn from a Gaussian distribution with
zero mean and unit variance. Because of the multiplication in
Equation 7, the standard deviation of the magnitude distribu-
tion is proportional to its mean. The coefficient kp = 0.04 is
estimated from the Weber fraction for line length (Petrov &
Anderson, 2005). Equation 7 is consistent with both Weber’s
and Stevens’s laws. An alternative, additive-noise equation
can also be used without altering the predictions of the theory
(Petrov, 2008).

M = aS n(1 + kpεp) (7)

The magnitude Ai of each anchor i on a given trial is a
noisy perturbation of its current location Li. The memory-
noise Equation 8 is analogous to the perceptual Equation 7.
A new perturbation εm is drawn for each element on each
trial from a Gaussian distribution with zero mean and unit
variance. The coefficient km is a free parameter that scales
the memory noise.

Ai = Li (1 + kmεm) for each element i (8)

Each anchor has a base-level activation Bi that quantifies
its availability as a function of the history of prior uses of the
corresponding response. The base-level Equation 9 is taken
verbatim from the ACT–R architecture (Anderson & Lebiere,
1998, p. 124). It is a logarithm of a sum of powers with decay
rate d = 0.5. Each new use of the anchor adds another term to
this sum, which then decays independently. The total count
so far is denoted by n, and tl are the individual time lags from
the present.

B = ln

 n∑
l=1

t−d
l

 (9)

B ≈ ln
[
t−0.5
last +

2(n − 1)
√

tli f e +
√

tlast

]
(10)

As Equation 9 is expensive to compute, all ANCHOR sim-
ulations use the approximate Equation 10 (Petrov, 2006). It
retains only three critical pieces of information about the an-
chor: the time since its creation tli f e, the time since its most
recent use tlast, and the total number of uses n. The approx-
imation preserves the three qualitative features of the acti-
vation dynamics: (a) sharp transient peak immediately after
each use, (b) decay in the absence of use, and (c) gradual
buildup of strength with frequent use. The third property

drives ANCHOR’s tendency for assimilative context effects
under skewed stimulus distributions. The first property ex-
plains why this tendency is diminished when stimuli of dif-
ferent types are mixed within a block in Experiment 2.

Because each exemplar in INST is used only once, the
sum in Equation 9 contains only one term. This produces the
simple decay Equation 11. Thus, the activation of an exem-
plar in INST equals the activation of an anchor in ANCHOR
that has been created on the same trial as the exemplar and
has not been used ever since. The buildup of strength with
frequent use is driven in INST by the accumulation of sepa-
rate instances.

B = ln t−d
li f e = −d ln tli f e (11)

The memory elements compete to match the target M on
each trial. This competition is governed by two equations.
Equation 12 produces goodness scores Gi, and the softmax
Equation 13 converts them into selection probabilities Pi.
Only one element is selected per trial.

Gi = − |M − Ai| + HBi (12)

Pi =
exp(Gi/T )∑
u exp(Gu/T )

(13)

Each goodness score Gi is a sum of two terms: similar-
ity − |M − Ai| and history HBi. The history weight param-
eter H controls the relative strength of these factors. The
direction of context effects (assimilative or compensatory) in
ANCHOR depends mostly on this parameter (see Figures 5
and 6). The temperature parameter T controls the stochas-
ticity of the softmax selection. Values close to zero produce
deterministic choice, whereas large values result in nearly
random sampling.

Equations 12 and 13 follow the ACT–R notational con-
vention (Anderson & Lebiere, 1998). The influential Gener-
alized Context Model (GCM, Nosofsky, 1986) uses a differ-
ent notation in which the exponentiation is incorporated into
the definition of similarities. ACT–R’s temperature T is the
inverse of GCM’s sensitivity parameter c. The two formula-
tions are mathematically equivalent, except that GCM treats
exemplar strengths as free parameters whereas the base-level
activations in INST are grounded in the rational analysis of
memory (Anderson & Milson, 1989).

The winning anchor (in ANCHOR) or instance (in INST)
represents the “first guess” about the classification of the cur-
rent stimulus. It provides a reference point for the correction
mechanism, which is the same in both models. The target
magnitude M is compared to the magnitude A of the element
retrieved from memory:

D = M − A (14)

The size and magnitude of the discrepancy D then deter-
mines the correction. There are five possible increments:

11 Only the line-length data are modeled here. The psychophys-
ics of the motion and texture stimuli in Experiment 2 is beyond the
scope of this article.
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I ∈ {−2,−1, 0, 1, 2}. The decision rule is based on four cri-
teria described by two free parameters: {−3c−,−c−, c+, 3c+}.
The cutoffs are multiplied by the category width W = 0.040
magnitude units (40 pixels). For example, an increment
I = +1 is made when c+W < D ≤ 3c+W. The corrected re-
sponse R is clipped at 1 or 7 if necessary:

R = RA + I clipped between Rmin and Rmax (15)

An ideal observer would use c+ = c− = 0.5 (Petrov & An-
derson, 2005). Thresholds greater than 0.5 produce conser-
vative correction strategies consistent with the sequential and
anchoring effects in the data (Petrov & Anderson, 2005). The
upward and downward corrections need not be symmetric. In
particular, when c+ < c−, the average response levels (ARLs)
settle above the midpoint of the response scale. This allows
the models to account for the systematic upward trend in the
ARLs from Experiment 1.

Importantly, the two models differ in the mechanism that
learns the locations Li of the memory elements. ANCHOR
uses the competitive learning rule in Equation 16. The new
anchor location L(t+1)

i∗ is a linear combination of the old loca-
tion L(t)

i∗ and the target magnitude M(t) on trial t. The learning
rate α is fixed to 0.3 based on previous research (Petrov &
Anderson, 2005). Exactly one anchor, with index i∗, is up-
dated on each trial. If there is feedback, this is it; otherwise
the system’s own response designates the anchor for update.

L(t+1)
i∗ = (1 − α)L(t)

i∗ + αM(t) (16)

INST does not use competitive learning. Instead, the tar-
get magnitude M on each trial is stored as a separate exem-
plar. Because of this, INST always predicts assimilative con-
text effects under skewed stimulus distributions:

PJ =

∑
jεJ

exp(G j/T )∑
uεU

exp(Gu/T )
(17)

The probability PJ to retrieve an instance of category J is the
sum of the individual retrieval probabilities of all members
jεJ of that category (Equation 13). The sum in the denomi-
nator is over the total memory pool U. Clearly, every mem-
ber j makes a positive contribution to PJ . Categories with
many members thus exert stronger gravitational fields than
do categories with few members.

Appendix B
Parameter Search

Five parameters were allowed to vary to optimize the fits
in Figure 4. The best-fitting values are reported in Table B1.
The default values from the original ANCHOR publication
(Petrov & Anderson, 2005) are also listed for comparison.
Three other constants are not listed because they are not
treated as free parameters here. The perceptual noise coeffi-
cient kp = 0.04 is constrained by the Weber fraction (Petrov

Table B1
Free parameters of the ANCHOR and INST models. The De-
fault column lists the values used to generate Figures 5 and
6. The two rightmost columns report the best-fitting values
used to generate Figure 4.
Parameter Default ANCHOR INST
History weight H (Eq. 12) varies 0.040 0.050
Memory noise km (Eq. 8) 0.070 0.083 0.050
Temperature T (Eq. 13) 0.040 0.032 0.030
Correction cutoff c− 0.80 0.60 0.60
Correction cutoff c+ 0.80 0.45 0.42

& Anderson, 2005). The activation decay rate d = 0.5 is con-
strained by the ACT–R architecture (Anderson & Lebiere,
1998). The learning rate α = 0.3 in Equation 16 does not
apply to the INST model. To equate the number of free pa-
rameters, it was not allowed to vary in ANCHOR either.

The two models were fitted using a combination of se-
quential quadratic programming12 and grid search of the pa-
rameter space. The objective was to minimize the root mean
squared error (RMSE) between the model ARLs and the
group-level data in Figure 5. Because the quadratic algo-
rithm had poor convergence with respect to parameters c+,
c−, and H, they were explored on a grid. The algorithm then
minimized the RMSE with respect to km and T . The best-
fitting values are reported in Table B1. Note the asymmet-
ric correction thresholds. The minimal RMS E was 0.173 for
INST and 0.154 for ANCHOR. The latter fit could have been
improved further if the learning rate α were allowed to vary
(RMS E = 0.138 for α = 0.40).

Appendix C
Simulation Experiment Method

The simulations that generated Figures 5 and 6 used stim-
ulus sequences conforming to the design of Experiment 1.
Each sequence consisted of 17 blocks of 28 trials each. The
uniform blocks contained 4 presentations of each stimulus.
The low (positively skewed) blocks contained 7, 6, 5, . . . ,
1 presentations of Stimuli 1, 2, 3, . . . , 7, respectively. The
high blocks were skewed in the opposite (negative) direction.
The order of presentation within each block was randomized.
There were six types of stimulus sequences (or groups). Five
of those (U1, L1, H1, L2, and H2) were the same as in Ex-
periment 1. A no-feedback-first, uniform control (U2) was
added for completeness.

The simulation was organized in batches. Each batch ran
a given model with given parameters on 250 replications of
each sequence type. Informal explorations indicated that the
pattern of context effects depended mostly on the history

12 The fmincon function in Matlab’s Optimization Toolbox
(The MathWorks, 2004). Transcripts of all model-fitting sessions
are available at http://alexpetrov.com/proj/anchor/
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weight parameter H. Reasonable variations of the other pa-
rameters did not introduce any qualitatively new patterns. All
simulations reported in Figures 5 and 6 were produced with
default values for all parameters except H. The defaults are
from the original ANCHOR publication (Petrov & Ander-
son, 2005) and are listed in the Default column in Table B1.
The specific H values are reported on the corresponding fig-
ure panels. Each run was initialized with 7 perfectly placed

memory elements, one per response category.
The sequence of stimulus-response pairs for each run was

converted to an ARL profile in the same way as the data from
Experiment 1. The 250 replications in each group were then
averaged together. Each panel on Figures 5 reports the 6
mean ARL profiles generated with a particular parameter set-
ting. Figure 6 combines the profiles according to Equation 2.


