Comment concerning1st and 2nd order transition performance

1 st order transition probability (fix gamma to 0 and alpha to 1)

Training R2 2 comps

1st order component manipulation ($\max \mathbf{N}$ comp=20, instead of 12)
1 comp: R2 $=.15 \mathrm{cvR} 2=.01$
2 comp: R2 $=.29 \mathrm{cvR} 2=.01$
3 comp: R2 $=.40 \mathrm{cvR} 2=.024$
4 comp: R2 $=.51 \quad \mathrm{cvR} 2=.071$
5 comp: R2 $=.60 \mathrm{cvR} 2=.10$

PCA Variance

5 comps = . 479
$10 \mathrm{comps}=.681$
12 comps $=.737$
$20 \mathrm{comps}=.891$

1st order Summary

- Training R2 components are more splintered, but do show some systematicity and toggle being captured.
- First order TM does not generalize well particularly with low N_comp values.

2nd order transition probability

- New functions
- count_2nd_transitions = produces 2nd order transition probability vector
- TM_learn_batch = the TM probability equivalent of successrep_learn_batch
- LRaven1_goalfun_TM = the TM probability equivalent of LRaven1_goalfun
- New scripts
- LRaven1_TM_optim = computes R2 and produces weight,PC, and pred vs obs figures
- LRaven1_TM_cvR2 = computes cvR2 for 1st or 2nd order transition probabilities
- R2 Results
- Below is a figure of the weights for 2 nd order with 5 comps ($\mathrm{R} 2=.56$)
- The figure takes the 1000 weight vector and turns it into a 100×10
- In general the PC and weights suffer from a lack of clear interpretability!

2nd order transition probability cont.

2nd order component manipulation

$1 \mathrm{comp}: \mathrm{R} 2=.34 \mathrm{cvR} 2=.117$
2 comp: R2 $=.42 \quad \mathrm{cvR} 2=.188$
3 comp: R2 $=.51 \quad \mathrm{cvR} 2=.228$
4 comp: R2 $=.57 \mathrm{cvR} 2=.256$
5 comp: R2 $=.61 \operatorname{cvR} 2=.252$

PCA Variance
5 comps $=.286$
10 comps $=.469$
12 comps $=.533$
20 comps $=.744$

2nd order Summary

- 2nd order info (and likely beyond 3rd order ect.) is more important and is being utilized by the SR more than 1st order info for score prediction.
- 2nd order transition probability components and weights do not produce components or weights that are very interpretable which is a big weakness.

