Chapter IV

An Integrated Model of Analogical Retrieval and Mapping

This chapter describes Ambr2 — a cognitive model built on the basis of the Dual archi�tec�ture. ‘Ambr’ stands for ‘Associative Memory-Based Reasoning’ (Kokinov 1988, 1994a) and has been conceived as a model with very broad scope. It offers a unified account of deductive, inductive, and analogical reasoning (Kokinov, 1988, 1992a). In this thesis, however, we will concentrate only on analogical reasoning because the simulation experiments performed with the model so far fall into this category.

One of the key ideas motivating Ambr research is that it is necessary to develop integrated models. With respect to analogy-making, the long-term goal is to develop a model which integrates all sub�processes mentioned in chapter 2: perception, retrieval, mapping, transfer, evaluation, and learning. At the time being, however, two of them are elaborated in much greater detail than the rest. Therefore, in this thesis we will concentrate only on these aspects of analogy making — retrieving a source analog, mapping it to the target and the integration be�tween the two.

In short, the present thesis is limited only to the Ambr2 model as it currently stands�. Here and now, Ambr2 is an integrated model of analogical retrieval and mapping. We fully recognize the fact that the model thus presented is incomplete and we view the current version of the model only as an intermediate stage of a bigger project: Ambr3 will add transfer and some el�ements of learning. Another Dual-based project, Pean, concentrates on perception and its integration with reasoning.

4.1. Ambr2 as a Psychological Theory

As a cognitive model, Ambr2 has two complementary aspects: (i) it puts forward some claims about the human cognitive system and (ii) it puts forward (and implements) a concrete computational scheme for solving a restricted class of problems. These two aspects correspond but do not overlap. For instance, we do not claim that humans pass markers in their heads while solving a problem; marker passing is used only instrumentally in Ambr2. On the other hand, we do claim that the process of human analogy-making cannot be partitioned into successive stages, each of which works independently of the others.

From methodological point of view, it is important to keep these two aspects separate. Following the dictum of Johnson-Laird (1989) to ‘make a clear distinction be�tween a program and the theory that it is intended to model’, the two aspects of Ambr2 are treated separately in this chapter. The chapter begins with an outline of the theoretical tenets behind the model. This is followed by a description of the exact computational mecha�nisms used by Ambr2. Finally, it is demonstrated how these computational mechanisms apply to the task of retrieving a source analog and mapping it to a target. Throughout the chapter, special emphasis is given to the points which are contributed by the present thesis and cannot be found in earlier publications.

4.1.1. Multiconstraint Theory

The differences among various alternative models of analogy should not obscure their commonalities. In particular, all of the models make some use of the three classes of constraints we have emphasized. The multiconstraint theory reflects the convergence of theoretical developments in the field. Analogy is undoubtedly one of the success stories in cognitive science.

(Holyoak & Thagard 1995, p.261)

Ambr2, like its predecessor Ambr1, belongs to the tradition set forth by Gentner (1983) and Holyoak & Thagard (1989). It agrees with the view that analogy-making involves alignment of the structural representations of two problems or situations. It agrees with the view that this alignment depends in one form or another on the following three constraints: (i) structural constraint — the pressure to identify and use an isomorphism between the descriptions of the two situations, (ii) semantic constraint — the pressure to identify and use correspondences be�tween semantically similar el�ements of the descriptions, and (iii) pragmatic constraint — the pressure to identify and use correspondences for pragmatically important el�ements of the descriptions.

Further, Ambr2 agrees that the aforementioned constraints are ‘soft’ — they do not operate as unviolable rules but rather as competing ‘pressures’ (Hofstadter 1984) that restrict the space of possible solutions to a problem.

4.1.2. Flexibility, Efficiency, and Context Sensitivity

Ambr2 is aimed at achieving the following properties that are characteristic of human cognition:

Flexibility — the sys�tem should be capable of producing a broad spectrum of behaviors. In the context of the present discussion, this implies that the set of all possible outcomes of the analogy-making process should be as large as possible. Humans do not seem to obey the restriction that, e.g., relations are always mapped only to relations. Therefore, it is highly desirable for a cognitive model not to ban any possibilities a priory, however strange and infrequent they may be.

Efficiency — the sys�tem should come up with some answer within a reasonable amount of time. In the context of the present discussion, this implies that the set of actually considered alternatives should be quite small. This requirement could be neglected when the problems presented to the model are simplified but it quickly becomes crucial with scaling up.

Flexibility and efficiency are often in conflict with each other. Measures for increasing flexibility tend to decrease efficiency and vice versa. For instance, the use of powerful all-encompassing techniques such as the huge constraint-satisfaction net�work in ACME (Holyoak & Thagard, 1989) opens the door for combinatorial explosion. On the other hand, the use of optimized, resource-focusing methods such as ignoring object attributes in SME (Falkenhainer et al., 1986) entails lack of flexibility.

There is, fortunately, a way out of this dilemma — it is possible to keep the ‘search space’ unrestricted and open-ended and yet to explore only a small fraction of it, thus escaping the combinatorial explosion. The regions (or ‘paths’) of the search space that are processed on each particular case are not prescribed in advance but are determined dynamically during the run. We call this style of com�pu�ta�tion parallel dynamic processing (Kokinov et al., 1996). The main idea is to explore several paths simultaneously but at speeds proportional to their promise (Holland, 1975; Hofstadter, 1983; Kokinov, 1994a). This strategy guarantees that, averaged over many trials, plausible solutions will be generated most of the time and yet no solution is ruled out a priory. This idea has been applied in other models of analogy-making with impressive results (Hofstadter, 1995; Mitchell, 1993; French, 1995).

One more consideration remains to be clarified: how to evaluate the ‘promise’ of a given path. The answer adopted in Dual is: Context! It is the context that gives cues about which regions of the search space are relevant and, therefore, merit exploration. Moreover, relevance comes in degrees and varies over time, thus making the com�pu�ta�tion that depends on this mechanism dynamic and context-sensitive.

There are many demonstrations that the human cognitive sys�tem is context-sensitive. Moreover, it is claimed that context-sensitivity can be found not only in processes like perception and language understanding (where it is widely accepted and unquestionable) but also at the level of so-called higher cognitive processes such as reasoning and decision making (Kokinov, 1990; Kokinov & Yoveva, 1996).  One of the main objectives of the Ambr2 model  is to account for this context-sensitive nature of human analogy-making.

4.1.3. Analog Retrieval

This section discusses the issue of analog retrieval and presents a novel explanation of some empirical phenomena reported in the literature.

4.1.3.1. The Task of Analog Retrieval

There is considerable evidence that the task of retrieving an appropriate source analog from long-term memory is one of the major difficulties in analogy-making. In particular, people often fail to access potentially useful analogs even though it could be verified that these analogs are in fact retained in their LTM (Gick & Holyoak, 1980, 1983). Other research has shown that, although people are often reminded of prior problems, events, or situations, these remindings are often based on similarities among objects and attributes rather than on relational similarities (Holyoak & Koh, 1987; Keane, 1987; Ross, 1984).

The task of analog retrieval can be stated roughly as follows: Given a very large pool of episodes (problems, situations, etc.) and a probe (a new episode), pick up one or a few episodes from the pool that are similar to the probe.

This task quickly becomes computationally very difficult as the number of old episodes increases. Moreover, a cognitive model of analog retrieval should also account for the profile of human analog retrieval:

	Retrieval is a relatively fast process — in most cases, an episode is either retrieved rapidly or not at all. The time needed does not seem to depend on the number of episodes stored in LTM. (It could depend on the probe, however.)

	The same person given the same probe is often reminded about different episodes if queried on dif�fer�ent occasions. In particular, there are context and priming effects on retrieval.

	Retrieval seems to be dominated by semantic as opposed to structural similarity (Holyoak & Koh, 1987; Keane, 1987; Ross, 1984).

Nevertheless, remindings based solely on shared relational structure do occur, albeit infrequently.

	Episodes from a domain similar to that of the probe tend to be retrieved much more readily than episodes from remote domains (Keane, 1986).

	Highly familiar episodes tend to be preferentially retrieved (Inagaki & Hatano, 1987, cited by Hummel & Holyoak, 1997).

	Retrieval is facilitated by learning conditions that encourage induction of an abstract schema from remote analogs (Gick & Holyoak, 1983).

	More generally, retrieval is facilitated by learning conditions that encourage intensive encoding of the original materials (Faries & Reiser, 1988, cited by Forbus et al., 1994b)

In addition, some researchers (Wharton et al., 1991) argue that retrieval is an inherently competitive process. More precisely, it is claimed that people are more likely to retrieve an episode from LTM if it is the best match available than if some other episode provides a better match. We have refrained to include this finding in the list, however, because it is not clear from the study whether the pattern of results could alternatively be explained with the interference be�tween dif�fer�ent episodes. Besides, the notion of ‘the best match available’ hides certain conceptual difficulties.

4.1.3.2. Models of Analog Retrieval

Numerous models of memory retrieval in general and analog retrieval in particular have been proposed in the literature.

In case-based reasoning (Carbonell, 1983; Kolodner, 1993; Veloso, 1994), retrieval is performed on the basis of specific LTM organization around a carefully crafted indexing scheme. As Kokinov (1994a) and Forbus et al. (1994b) point out, however, such indexing schemes can be very efficient but lack psychological plausibility because they fail to match the pattern outlined in the previous subsection (e.g., they are not flexible enough).

In memory-based reasoning (Stanfill & Waltz, 1986), retrieval is performed on the basis of a general measure of similarity be�tween cases. Usually, this measure is simply the dot product be�tween feature vectors, as in many mathematical models of human memory. Flat feature vectors, however, are out of favor in analogy research because analogy-making is an inherently structural problem.

Two influential models — ARCS (Thagard et al., 1990) and MAC/FAC (Forbus et al., 1994b) — use different variations of a same general idea. They address the issue of retrieval by a two-stage screening (cf. Smith et al., 1974). Initially, a cheap filter is applied to all episodes stored in LTM. Then, the episodes that have ‘survived’ the first test are subjected to more stringent (and computationally more costly) evaluation. (Figure 4.1.3.) The second stage in both models is based on the machinery used for mapping — ACME and SME, respectively — although working in ‘economical’ mode.







Figure 4.1.3. Memory retrieval as a two-stage screening.

In a recent proposal — LISA — Hummel & Holyoak (1997) view retrieval as ‘a process of guided pattern classification, in which units representing stored propositions compete to respond to the distributed patterns generated by an active “driver” analog’ (p. 47). Their model depends on distributed representations over semantic units, an approach that has much in common with the feature vectors mentioned above. LISA, however, escapes from the ‘flatness’ of such vectors by using dynamic binding to represent structured propositions. An important advantage of LISA is that the retrieval process is integrated with the process of mapping. Both operate in the same fundamental way and on the same knowledge representations. Thus, this model constitutes an interesting alternative to the Ambr approach.

Spreading activation has also been used by several independent proposals (Anderson, 1983, 1993; Anderson & Thompson, 1989; Holland et al., 1986). The main idea here is to start by activating the probe and allowing this activation to spread through the LTM. Those memory elements that become more active than others are considered as more plausible source analogs.

Ambr1 belongs to the category of models that depend on spreading ac�ti�va�tion (Kokinov, 1994a). It is also characterized by the fact that it integrates retrieval and mapping. Ambr2 follows the track of its predecessor but has modified many details. We will turn the discussion now to one particular modification that, in our view, has broader scope than that of the Ambr2 model itself.

4.1.3.3 One Problem with Retrieval Models

The models discussed so far assume explicitly or implicitly (at least to the extent that can be judged from the articles) that all episodes stored in the LTM are processed each time, although superficially. To begin with the more clear examples, the first stages of ARCS and MAC/FAC in fact do exhaustive parallel search of the whole episodic memory. That implies that the sys�tem has a complete list (or some equivalent thereof) of all episodes stored in the LTM. The same implication can be made for case-based models,  for feature-vector models, etc.

LISA seems to employ full connectivity be�tween the semantic units and all predicate and object units that they affect. More precisely, if some predicate (or object) P1 involves the semantic microfeature S, then there will be a link from the unit standing for S and the unit standing for P1. Similar links will connect S with all other units P2, P2, ... Pn that depend on it. For instance, the micro�feature animate (see Appendix B in (Hummel & Holyoak, 1997)) is connected to all nodes standing for animate beings in the LTM.

Ambr2 could use analogous strategy. At first, we intended to put :instance links from a conceptual node to each of its instances in the net�work. The problem with this approach is that the number of such links will become unacceptably big. A long-term memory of any realistic size would contain thousands of dif�fer�ent episodes and hence hundreds of instances of a given concept. This number would be greater for high-frequency concepts such as cause�. In sys�tems using distributed representations the number of links is even greater because each instance has to be linked to several semantic primitives instead to a single parent.

From a psychological point of view, it seems very unrealistic that there are links to all instances of a given concept (or, in the case of LISA, to all instances characterized by a given microfeature). A person could not possibly enumerate all instances of the relation revolves-around that participate in some episode stored in LTM. Even less likely is that some computational mechanism ‘visits’, however superficially and unconsciously, all episodes that have been accumulated from past experience.

The notion of having so many links is questionable from computational point of view as well. The spreading-activation mechanism becomes virtually useless when the fan�out factor is in the order of thousands or tens of thousands. In models using weight normalization (such as Ambr), having a thousand links is equivalent to having none. Such links fail to transmit any activation and yet they clutter the system.

It is important to stress that there is no problem with the links in the opposite direction. It is reasonable, we think, to posit a :inst-of link starting from each instance and pointing to the corresponding concept. Those ‘bottom-up’ links, however, are not very useful for retrieval of related episodes (though they are certainly useful for other purposes).

To sum up, it seems highly unlikely that the cognitive sys�tem keeps a list (or some equivalent thereof) of all episodes stored in LTM. Consequently, it is unlikely that human memory retrieval depends on thorough search of the entire LTM (be it serial or parallel). Similarly, it is questioned whether the memory el�ement(s) representing a given concept have direct access to all memory el�ements representing instances of this concept.

On the other hand, a person can usually enumerate some instances of any familiar concept. In addition, directed association studies reveal that ac�ti�va�tion of a concept tends to activate some of its instances, and in particular the more typical ones.

4.1.3.4. The Ambr2 Proposal

Ambr2 adopts the following memory organization with respect to the problem outlined above. Part of the memory el�ements encode information about concepts and their inter�relations. In Ambr2 terminology, these are agents of :type :concept. Another part of the memory el�ements encode in�for�ma�tion about specific objects, events, situations, etc. In Ambr2 terminology, these are agents of :type :instance. El�ements of both kinds are linked in a common net�work by various labeled links (see section 3.2.2.6). In addition to having a label, each link also has a weight.

As a rule, each el�ement of :type :instance has a :inst-of link pointing to the appropriate concept. In the other direction, an element of :type :concept may have :instance links to some of its instances. The total number of such ‘top-down’ links is limited. Therefore, most of the instances of any given concept are not directly accessible from it. This relieves the model of the implausible assumptions discussed in the previous sub�section.

One more question remains to be clarified: which instances are ‘privileged’ to be accessible by their corresponding concept and what is the mechanism responsible for favoring ones and neglecting others.

The answer adopted in Ambr2 is that top-down links (and hence the topology of the whole net�work) are subject to continuous restructuring. The exact mechanisms for this are open for discussion but the main principle is the following: when some instance has been activated and processed for sufficiently long time, chances are that a  new memory trace will be established. In Ambr2 terminology, a new top-down link will be created or the existing one (if any) will be strengthened.

New links are established at the expense of old ones. Again, the exact mechanism is open for discussion but one natural approach is the following: the new link is added to the total set of links leaving the corresponding node with some non-zero weight. Afterwards, the total weight of the links is renormalized again, which will decrease the weights of all older links. If some weight becomes too low after the application of this procedure, the link is removed.

This mechanism ensures that at any given moment only a few links will point ‘downward’ from any given concept node. Stated differently, there is retroactive interference be�tween new instances (or episodes, problems, etc.) and older ones. This interference restricts the number of reliable memory traces without ruling out any particular element on a priory basis.

4.1.3.5. Explanation of Empirical Facts

This subsection discusses the empirical facts outlined in subsection 4.1.3.1 in the light of the current proposal. Related arguments can be found in (Kokinov 1994a, pp.276-8). For easy reference, we will use the numeration from subsection 4.1.3.1.

Phenomena related to episode similarity have straight�forward explanation. Ac�ti�va�tion spreads from the instances of the probe along the bottom-up links and activates the corresponding concepts, which in turn activate some other instances through top-down links. Episodes (or coalitions) where ac�ti�va�tion converges will be retrieved and this happens either rapidly or not at all (phenomenon 1). Moreover, the time for retrieval does not depend on the total number of nodes in LTM.

It is clear that familiar episodes will be preferentially retrieved (phenomena 5. and 6.) because such episodes are more likely to be linked to the corresponding concepts. Moreover, the conceptual network for familiar domains is supposedly more elaborate, which provides more ‘hooks’ for the instances.

In addition, retrieval is facilitated by learning conditions that encourage intensive encoding of the original materials (phenomena 7. and 8.). Such intensive encoding, among other things, increases the probability that the  representation of the problem being learned will be wired into the net�work. (See Kokinov (1994a, p. 277) for additional discussion about abstract schemas.)

Phenomenon 2. deserves special attention. The same person given the same probe on different occasions could be reminded about dif�fer�ent episodes due to a combination of the following two reasons: (i) the connectivity among the memory el�ements changes from one occasion to the next as a result of the experiences happened in the interim; (ii) the external context on the two occasions is dif�fer�ent. The overall pattern of ac�ti�va�tion in the net�work depends not only on the probe but also on the things that are perceived at the time. (Archimedes cried “Eureka!” only after he saw the water spilling out of his bath-tub.)

We now turn to the questions that are specific to analog retrieval (phenomena 2. and 3.) and have been in the focus of previous models (Thagard et al., 1990; Forbus et al., 1994b; Kokinov, 1994a).

Why is analog retrieval difficult? According to Ambr2, at least part of the answer is the following: Spreading activation is an automatic process and is beyond the control of the reasoner. The latter can influence the outcome of the process only indirectly (Kokinov, 1994a). In addition, there are several factors that limit the spread of activation. One factor of this kind is the restriction on the number of top-down links proposed here. Thus, many episodes that would be good source analogs reside in the LTM but do not receive enough ac�ti�va�tion to enter the working memory.

Why does semantic similarity dominate retrieval? Activation spreads mostly through links which have definite semantic interpretation. In particular, many links represent class/instance and superclass/subclass relationships. In this way, ac�ti�va�tion in effect spreads mainly (though not exclusively) among semantically similar el�ements. The associative mechanism does not distinguish be�tween structural and superficial features so both are used in retrieval. Since the number of superficial features used to described a situation is usually greater than the number of structural ones, retrieval as a whole is dominated by the former (Kokinov, 1994a).

There is an additional fan-out effect with respect to relations. The relative frequency of relations is greater than that of objects and attributes. A couple of dozens of relations occur again and again in each new episode. Due to retroactive interference, the ‘turnover’ of the :instance links from the relational nodes is expected to be very high. As a result, these nodes does not serve as good transmitters of ac�ti�va�tion in retrieval. They get highly activated by the probe but the activation fails to converge on a single episode in the LTM.

A prediction of the model is that low-frequency (and hence semantically more loaded) relations such as revolves-around will be stronger retrieval cues than high-frequency relations such as in, greater-than, and cause. This prediction has to be tested experimentally.

Why do ‘insightful’ retrievals happen, after all? According to Ambr2, the answer lies in the combination of the following four reasons. First, there always is some small baseline probability for any episode to be retrieved. This stems from the fact that Ambr2 does not reject any possibilities a priory. Therefore, in a big sample of trials one could expect a few ‘insights’ as well as a few ‘blunders’. Second, retrieval in Ambr2 is context-sensitive. A particular episode could be facilitated by the external context and/or by priming effects (Kokinov, 1990, 1994a).

Third, the retrieval process in Ambr2 acts in close interaction with the mapping process. Thus, a semantically unrelated by structurally similar analog could be retrieved as a result of a ‘bootstrap’ sequence of events.

A fourth reason which is closely related to the third is that the retrieval in Ambr2 operates at the level of individual propositions, not at the level of whole situations. This follows from the decentralized nature of the knowledge representation scheme adopted in the model.

4.2. Knowledge Representation in Ambr2

This section begins the presentation of Ambr2 as a computational model. It shows how the Dual representational scheme is actually put to work in Ambr2.

4.2.1. Types of Ambr2 Agents

According to the specification of the archi�tec�ture (section 3.2.3.), each Dual agent has a micro-frame. The micro-frame is a bundle of labeled slots. The semantics of a slot is determined by its label. Some labels (e.g. type, inst-of) have the same interpretation in all micro-frames. They form the basis of the so-called general slots (or G-slots). For instance, each Dual agent has a G-slot labeled type and the interpretation of this slot is the same across all agents in the archi�tec�ture. In addition to the general slots, each micro-frame may have frame-specific slots (or S-slots) of its own. S-slots have dummy labels like slot1, slot2, etc. and are like subframes within the frame. They have facets which have labels like the G-slots. For instance, the S-slot labeled slot1 may have facet labeled type.

The general slots and the facets of the S-slots are filled up by fillers. In Ambr2 there are two kinds of fillers — tags and references. Tags are used mostly as fillers of the type slot to delineate the type of the micro-agent. Other slots are filled by references to other micro-agents, thus linking the micro-frame to the bigger representational structure — the meso-frame (section 3.3.3.). This sub�section deals with the type slot and the possible tags that may serve as its fillers.

Each agent in Ambr2 has a type slot that describes the type of the agent. More precisely, the set of all Ambr2 type tags is the following:

concept — the micro-frame represents a whole class of instances;

instance — the micro-frame represents a particular instance;

hypothesis — the micro-frame represents a hypothesis about a tentative correspondence be�tween two concepts or two instances;

temporary — denotes that the micro-frame (and the whole agent) is temporary (see section 3.2.6.);

object — the micro-frame represents an object, an attribute value, or some other non-relational entity;

relation — the micro-frame represents a relation (possibly with a single argument);

situation — the micro-frame stands as a common reference point to the spatio-temporal unity of a coalition of micro-frames (see section 4.2.3.);

embryo — used only for ‘embryo’ hypotheses (see section 4.3.3.4.);

mature — used only for established hypotheses.

These tags can be used in conjunction with one another to account for the variety of agents employed by the model. For instance, the type slot of some agent can be filled by the list (temporary instance relation) thus stating that the agent under question is a temporary agent standing for an instance of some relation.

There are rules that restrict the combinations among dif�fer�ent type tags. For example, all agents of type hypothesis are also temporary. Therefore, despite the big number of possible type combinations, there are only three major types of Ambr2 agents: concept-agent, instance-agent, and hypothesis-agent. Thus, the first three tags from the list above are the most important. The remaining tags mark type subdivisions.







Figure 4.2.1. Main types of Ambr2 agents.

4.2.2. Representation of concepts and objects

With full awareness that Ambr2 agents are nothing but ungrounded symbols (Harnad, 1990), we follow the common AI terminology and say that they stand for ‘things in the world’. We also use mnemonic agent names like fire, cause, etc. Those names are irrelevant for the model itself; the program would work just as well (or as bad) had the agents been named ag001, ag002, etc.�

Concept-agents represent classes of entities. Different concept-agents stand for dif�fer�ent classes (or ‘concepts’). The taxonomy of classes is represented by subc and superc links be�tween concept-agents. Each class may be linked to zero, one or more super- or sub-classes, dif�fer�ent links possibly having dif�fer�ent weights (section 3.2.4.2.)

Instance-agents represent individual instances. Each instance agent has an inst-of slot filled by a reference to the concept-agent representing the class of the instance. The specification of Ambr2 postulates that each instance has exactly one ‘parent concept’�. Figure 4.2.2. illustrates.

liquid-holder:

	:type	(concept object)

  :superc	teapot

teapot:

	:type	(concept object)

	:subc	liquid-holder

  :instance	teapot-1

teapot-1:

	:type	(entity object)

  :inst-of  teapot

teapot-73:

	:type	(entity object�			 temporary)

  :inst-of  teapot

a)							b)

Figure 4.2.2. Example of concept-agents, instance-agents, and possible relations be�tween them. Each micro-frame can have additional slots (not shown in the figure). All con�nec�tion�ist aspects are omitted.

Some instance-agents are temporary (see section 3.2.6.). They are marked by a temporary tag. Absence of such tag means that the agent is permanent. Temporary agents does not belong to the long-term memory of the sys�tem. Rather, (it is supposed that) they have been constructed during the recent computation by some perceptual or inference mechanism. In the current version of Ambr2, temporary instance-agents are used to represent the target situation or the problem that the model tries to solve. In contrast, permanent instance agents are used for all situations stored in the LTM. Concept-agents are always permanent.

Concepts and instances alike are characterized by one more tag in their type list — object, relation, or situation. These tags are mutually exclusive. An object tag means that the micro-frame represents some object or a class of objects. All agents in Figure 4.2.1.2. belong to this category. Sometimes, the same tag is used for other non-relational categories such as colors, temperature qualifiers, etc. In contrast, the relation tag is used to designate micro-frames that represent some relation. Such micro-frames usually have frame-specific slots that represent the arguments of the relation. Ambr2 treats attributes (cf. Gentner, 1983) as one-argument relations. Finally, there are agents of type situation. Contrary to the name of the tag, such agents do not represent whole situations. Rather, they represent the spatio-temporal unity of a coalition of micro-agents (see subsection 4.2.3.). This additional in�for�ma�tion is used by the structure-correspondence mechanism.

4.2.3. Representation of Propositions

Individual Ambr agents are small and their micro-frames cannot represent much. Therefore, even relatively simple representational units like propositions need to be represented by a coalition of agents (section 3.3.3.). In the case of propositions, such coalitions are small and very tight.

color-of:

	:type	(concept relation)

	:subc	physical-relation

	:slot1

	  :c-coref  object

	:slot2

	  :c-coref  color

color-of-1:

	:type	(instance relation)

	:inst-of	color-of

	:slot1

	  :inst-of  (color-of . :slot1)

	  :c-coref  teapot-1

	:slot2

	  :inst-of  (color-of . :slot2)

    :c-coref  green-1

teapot-1:

	:type	(entity object)

	:inst-of  teapot

  :c-coref  (color-of-1 . :slot1)

green-1:

	:type	(entity object)

	:inst-of  green

  :c-coref  (color-of-1 . :slot2)

a)								b)

Figure 4.2.3. A coalition of four micro-frames representing the proposition color-of-1(teapot-1, green-1). Compare with figure 3.3.3.1.

There is an agent that represents the head of the proposition. In Figure 4.2.3., this is the micro-agent color-of-1. It is of type relation and is an instance of the concept color-of. The arguments of the relation are represented by S-slots in the heading micro-frame. More precisely, the two slots of in-1 represents the roles of the two operands. The concept-agent defines which is which. In this case, slot1 is an object and slot2 is its color. (Note that the same slot labels will have completely different meaning when used in other micro-frames.)

The arguments (or roles) of the relation are bound to the actual entities involved in the particular instance of that relation by conceptual coreferences (or c-coref’s for short). In Figure 4.2.3., the first S-slot of the micro-frame color-of-1 has a facet labeled c-coref and this facet is filled by a reference to the agent named teapot-1. In a nutshell, the existence of c-coref links be�tween two micro-frames (or their slots) mean that the two frames represent two complementary aspects of the same entity. In our example, these links represent the fact that teapot-1 and the first argument of color-of-1 are one and the same thing. Similarly, the second argument of the relation is bound to the particular shade of green that happens to be the color of teapot-1.

It is important to stress that the agents shown in the figure convey in�for�ma�tion about a number of other facts besides the proposition color�of�1(teapot-1, green-1). In particular, teapot-1 is an instance of teapot, color-of is a kind of physical-relation and so forth. Thus, each agent shown in Figure 4.2.3. participates in a number of overlapping co�ali�tions. Alternatively, it could be said that the small co�ali�tion participates in a bigger co�ali�tion (a meso-frame) representing a whole situation.

4.2.4. Representation of Situations

Ambr2 differs from its predecessor in the representation of situations (or problems). Ambr1  used centralized representation, Ambr2 — decentralized. This sub�section considers the advantages and disadvantages of these two possibilities.

4.2.4.1. Centralized Representation

The centralized representation of situation is characterized by the existence of a micro-frame standing for the situation as a whole. This micro-frame is called head of the situation. The head brings together all agents that build up the representation of the situation. There is one S-slot for each el�ement — object or relation. The head is linked to all el�ements and some el�ements are linked back to the head, thus creating a net�work like the one schematized in Figure 4.2.4.1. In addition to the ‘vertical’ links be�tween the head and its el�ements, there are many ‘horizontal’ links be�tween the el�ements themselves.





Figure 4.2.4.1. Schematic outline of centralized representation of a situation. There is one head that is connected to all el�ements of the situation. Cf. figure 4.2.4.2.

The centralized representation has a number of advantages. First, the situation has distinct identity. There is a frame that represents it as a whole. Thus, it is clear who is ‘responsible’ for the situation. To begin working on a problem, for example, it is sufficient to put the head on the goal list. To decide which situation ‘wins’ certain competition, it is sufficient to compare the activation levels of the heads, etc.

Second, all relevant aspects of a given situation are collected at one place. In other words, the frame problem is solved in advance. (Though it is the human programmer, not the program, who has solved it.)

Finally, the task of mapping one problem to another is greatly facilitated. It is transformed into a task of establishing slot-to-slot correspondences be�tween two micro-frames. After the correspondences have been found, it is clear which el�ements of the source situation are left unmapped and are thus potential candidates for transfer.

Each of these advantages can be viewed as a disadvantage in the same time. From a psychological point of view, it is controversial whether each episode in the LTM has such distinct and clear-cut identity. It is comfortable to suppose that Hamlet and Westside Story are salient and well-defined chunks for many people. It is acceptable to suppose that the radiation problem (Dunker, 1945)  is sufficiently self-contained chunk for some psychologists and a few of their subjects (Gick & Holyoak, 1983). The problems used to test Ambr, however, deal with mundane episodes such as boiling a pot of water. Most of the situations fall into this final category and it is far from clear whether the assumption that they are represented in such neat and centralized fashion is warranted.

Second, centralized repre�sen�ta�tions tend to be too static and inflexible. The el�ements of a situation are defined in advance and special steps need to be taken in order to add a new el�ement or to remove an old one. Moreover, some researchers (Chalmers et al., 1992) argue that the models that start from hand-made representations of the problem by-pass the most dif�ficult and essential part of analogy-making. Both Ambr1 and Ambr2 are susceptible to this criticism but Ambr2 is a little less so due to the decentralized nature of its representations.

Finally (and very importantly), the slots in the heading micro-frame become too many. Even the simple situations used in the simulation experiments so far require that the head has at least ten S-slots. For realistic situations this number would be in the order of one hundred. When the number of slots is that big, however, the frame problem re-appears again — it is necessary to specify which of the many el�ements of the situation are relevant to the task at hand. The big number of slots contradicts the specification of Dual (sub�section 3.2.3.2.). Worst of all, the fan-out effect makes the con�nec�tion�ist mechanism very inefficient. Even when the head is very active it fails to activate its children because the weight of each individual link is very small (due to normalization).  When (and if) this finally happens, there comes another problem — the coalition becomes so stable that it never leaves the working memory because the reverberation is stronger than the decay.

As a respond to these problems, Ambr2 has abandoned the centralized representation used by its predecessor. The shift to decentralized repre�sen�ta�tions poses problems in its own right but also offers a number of substantial improvements.

4.2.4.2. Decentralized Representation

The main idea of decentralized representations is to represent the situation as a co�ali�tion of micro-frames without designating any of them as a center. Figure 4.2.4.2. illustrates. It is possible, though not required, that some (salient) co�ali�tions have a head, but even in these cases the head is primus inter parens. It is not special in any way and do not have access to all el�ements of the situation.





Figure 4.2.4.2. Schematic outline of decentralized representation of a situation. There are many interconnected agents, none of which is in a privileged position with respect to the others. Compare with figure 4.2.4.1.

With decentralized representations, the principal unit of analysis is the meso-frame (see subsection 3.3.3). Thus, micro-frames (i.e. individual agents) can have only a few slots and yet it is possible to represent big situations. It is easier to add a new el�ement — there is no need to ‘register’ it in the head.

In addition, decentralized representations are more natural for the con�nec�tion�ist aspect of Dual. The representation of a situation integrates smoothly with the rest of the net�work. The associative mechanism can determine the relevance of the el�ements of a situation, activating only some of them on each particular occasion. There are many ‘entry points’ to the meso-frame, not just one (the head). The pattern of connectivity is evenly distributed among many agents, thus reducing the fan-out factor.

Meso-frames are emergent, flexible, and with fuzzy boundaries (sub�section 3.3.3.). As there are no fixed and predefined representation rules, each particular situation can be described in a way that is most suitable for it and is not identical with other situations. Thus, it would be easier to design a perceptual mechanism that incrementally builds such representations.

Of course, all these advantages come with a price: situations no longer have guaranteed and easily available identity. This is good from psychological point of view, as it offers possibilities for modeling complex analogies, blends, etc. From computational point of view, however, decentralization of repre�sen�ta�tions increases the complexity of the mechanisms that operate on them. In particular, the task of mapping becomes much more difficult. Ambr2 has developed a number of specialized features like secretaries, embryo hypotheses, etc. to cope with this problem.

4.3. Computational Mechanisms Used in Ambr2

This section describes the four basic computational mechanisms used in the model: spreading activation, marker-passing, constraint-satisfaction, and structure-correspondence. The next section shows how these mechanisms work together  in a problem-solving task.

4.3.1. Associative Mechanism

One of the key factors in human intelligence is the ability to identify and to utilize the knowledge that is relevant to a particular problem.

(Anderson 1983, p.86)

The purpose of the associative mechanism is to determine the relevance of each particular piece of knowledge, bringing relevant pieces into the working memory (Anderson, 1983; Kokinov, 1994a). The associative mech�an�ism in Ambr2 relies on the connectionist aspect of Dual archi�tec�ture. The connectionist aspect is outlined in sections 3.2.4. and 3.4.2. It is not repeated here. This section is devoted to the basic formulas that are peculiar to Ambr2.

Ambr2 uses a modified version of the Grossberg ac�ti�va�tion function (Grossberg, 1978; Holyoak & Thagard, 1989). The modifications were made to meet the following requirements of Dual’s specification:

	Time is continuous. (Or, the length of one el�ementary con�nec�tion�ist cycle is negligibly small with respect to the macroscopic time scale.)

	Activation level of all agents is always non-negative and is bounded by some maximal value M.

	All links in the long-term memory are excitatory�.

	There is a threshold ( that clips small ac�ti�va�tion levels to zero.

If we neglect the threshold for the moment, the activation level a of any single node in the Ambr2 net�work is governed by the following differential equation:

a(t0) = a0

� EMBED Equation.2  ��� = F (a, n) = -d.a(t) + E.n(t).[M-a(t)]  ,

where a = a(t) is the activation level as a function of time, n = n(t) is the net input to the node, M = const is the maximal activation value, and d and E are parameters that control the rate of decay and excitation, respectively.

The differential equation could be discretized using some small time step h:

a(t0) = a0

a(t+h) = Fh (a, n) = a(t) + [-d.a(t) + E.n(t).[M-a(t)]].h

When h is sufficiently small, the second equation can approximate the first with arbitrary precision.

In the special case of constant input n = const, the differential equation yields the following solution (exp is the exponential function):

a(t) = � EMBED Equation.2  ���M.[1 - exp(-(d+En)(t-t0))] + a0. exp(-(d+En)(t-t0)) 

Let us assume that the initial time is zero (t0 = 0), and define the following terms:

p = E/d 	— maintenance factor (cf. Anderson, 1983);

a* = � EMBED Equation.2  ���M = � EMBED Equation.2  ���M	— asymptotic activation level for input n;

T = � EMBED Equation.2  ��� 	— characteristic time for net input n.

With the aid of the new terms, the activation func�tion can be expressed in the following way:

a(t) = a*.[1 - e-t/T] + a0.e-t/T

The last equation reveals that the activation level at any given moment t can be partitioned in two components: exogenous ac�ti�va�tion and residual ac�ti�va�tion (cf. section 3.4.2.). The former reflects the external influence to the agent. The net input drives the ac�ti�va�tion level to some resting state a* that depends on the magnitude of the input n, the parameter p, and the maximal activation level M. The agent, however, has a certain degree of inertness and, therefore, tends to keep its original state a0. This inertness of the con�nec�tion�ist aspect of the agent gives rise to the residual ac�ti�va�tion in the equation above. The transition be�tween the initial state a0 and the resting state a* is governed by exponential law as shown in Figure 4.3.1.
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Figure 4.3.1. Plot of the change of ac�ti�va�tion of a Dual agent under the influence of fixed external input. Activation moves from initial level a0 to resting level a* by an exponential function. The speed of the change is described by the characteristic time T. Both a* and T depend on the magnitude of the external input.

The func�tion described above is the basis of the activation func�tion of Ambr2 agents of type concept and instance. (Hypothesis-agents have a more complicated ac�ti�va�tion func�tion described later.) There is one more complication, however — Ambr2 agents use a threshold. Whenever the ac�ti�va�tion drops below some predefined minimal level (, it is instantaneously brought to zero (and forced out of the working memory). Conversely, when the activation level of some node is zero and the magnitude of the net input n is bigger than some critical value n(, the activation level of the node jumps instantaneously to the threshold level (  and then proceeds in the usual manner. The critical value n( is determined from the equation � EMBED Equation.2  ���M = ( .

4.3.2. Marker-Passing Mechanism

Marker passing (MP) has been developed within the semantic net�work tradition (Quillian, 1966; Fahlman, 1979; Charniak, 1983; Hendler, 1988, 1989). In its most basic form it is a tool for answering the question, “Given two nodes in the net�work, is there a path be�tween them?”. The idea behind the marker passing is simple: the two nodes of origin are marked, they mark their neighbors, which in turn mark their neighbors and so forth. Thus, each origin sets up a wave of markers that gradually expands until some attenuation mechanism stops the marking.

The attenuation mech�an�ism is needed to restrict the spread of markers. It is one of the biggest issues in most marker-passing sys�tems. (See Hendler (1988) for an overview.) In Dual and Ambr, there is no need for a specialized attenuation mech�an�ism. Instead, the spread of markers is controlled in a natural way by the following factors:

	Markers originate only from agents of type instance. The conceptual agents do not create new markers, they only pass the existing ones.

	Markers propagate only along links with certain labels (see below).

	Only active agents can receive and send markers. Thus, the spread of markers is limited by the boundaries of the working memory as determined by the associative mech�an�ism.

	When there is a marker intersection, the markers stop and do not propagate further.

	The speed of symbolic processing in general and marker-passing in particular depends on the ‘energy’ supplied by the con�nec�tion�ist machinery (see section 3.2.5.3.). Thus, markers propagate slowly into those regions of the working memory where the ac�ti�va�tion level is low.

In Ambr2, like in its predecessor Ambr1 (Kokinov, 1994a), markers are passed only along links with labeled inst-of or subc. These are the links that go ‘upward’ in the class hierarchy. As a consequence, the marker-passing mech�an�ism finds a path be�tween two nodes in the net�work only when they are instances (directly or by inheritance) of one and the same concept. In Ambr2, this is interpreted as evidence that the two instances are semantically similar. In the example given in section 3.3.5., two markers originating from teapot-1 and glass-2 intersect at the conceptual node liquid-holder.

It is important to stress that the marker-passing mech�an�ism is dynamic and context-dependent. Markers starting from the same two nodes A and B may intersect at different concepts (or not at all) depending on the activation levels of the corresponding path in the net�work. This makes the process of computing semantic similarity in Ambr dynamic and context-dependent (Kokinov 1994a,c).

4.3.3. Constraint-Satisfaction Mechanism

4.3.3.1. Main Points

The multiconstraint theory (Holyoak & Thagard 1989, 1995) treats analogy-making in the light of three constraints: structural, semantic, and pragmatic. Ambr2 adopts this general idea. Like ACME, Ambr uses a parallel con�nec�tion�ist algorithm for solving the constraint-satisfaction problem. This does not mean, however, that Ambr is a simple replication of ACME. Ambr1 (Kokinov, 1994a) makes several important contributions. Most notably, the constraint-satisfaction net�work (CSN) is constructed dynamically and is interleaved with the main net�work (i.e. the network storing conceptual and episodic in�for�ma�tion). In turn, Ambr2 makes several improvements with respect to its predecessor. They are: (i) decentralized representations, (ii) continuous marker-passing, (iii) life cycle of hypotheses, (iv) secretaries, (v) general and flexible treatment of symmetric relations, and (vi) change of the ac�ti�va�tion function.

Previous constraint satisfaction models, and in particular ACME (Holyoak & Thagard, 1989) and ARCS (Thagard et al., 1990), work in successive stages. First, a source analog is retrieved from long-term memory or supplied manually by the experimenter. Second, a constraint satisfaction net�work is constructed by a sequential symbolic process. Finally, the network is allowed to settle, thus finding a (partial) solution to the constraint-satisfaction problem. This three-step process is illustrated in Figure 4.3.3.1. The stages are carried out by dif�fer�ent and independent mechanisms.





Figure 4.3.3.1. Constraint satisfaction as a three-stage process. The three stages come one after the other and do not interact.

In contrast, Ambr (Kokinov, 1994a) views constraint-satisfaction as a single integrated process that has three interacting subprocesses. The constraint-satisfaction net is constructed incrementally and in parallel with the retrieval sub�process. Moreover, the CSN is incorporated into the larger net�work and is continuously relaxing throughout the operation of the model. Thus, all sub�processes are evolving together, each one influencing the rest. The whole computation is performed in an integrated fashion — the same computational mechanisms are responsible for all three subprocesses and they use the same representational structures.





Figure 4.3.3.2. Constraint satisfaction as a set of three interacting sub�processes. Compare with figure 4.3.3.1.

This computational scheme has several important advantages:

	Mapping and retrieval are integrated.

	At any moment, the constraint satisfaction net�work is at least partially settled and thus the sys�tem always has some current (though incomplete) view of the problem it solves.

	The subprocess that builds the CSN can be guided by the associative mechanism to avoid blind construction of implausible hypotheses. In this way, Ambr builds only a small fraction of the hypotheses generated by ACME. This decreases the working-memory demands — a weakness of ACME that has been criticized by many researchers including its authors themselves (Keane et al., 1994; Kokinov, 1994a; French, 1995; Hummel & Holyoak, 1997).

	In the same time, Ambr retains the flexibility implied by the all-encompassing net�work used in ACME. Ambr does not construct all hypotheses, it constructs only relevant ones. And since relevance is dynamically determined, no possibilities are ignored a priory. This benefit is a direct consequence of the dynamic emergent computation that underlies Ambr’s constraint satisfaction (section 4.1.2.).

	The flexibility of Ambr (and especially of Ambr2) is even greater because several mappings can proceed in parallel, thus allowing for complex analogies and blends when appropriate.

	There is no need for special nodes enforcing the semantic and pragmatic constraints. Rather, these constraints are mediated by ordinary concepts and instances in the main net�work.

4.3.3.2. Hypothesis Agents

The constraint satisfaction net�work in Ambr2 consists of hypothesis-agents. These agents have specific ac�ti�va�tion func�tion and specialized symbolic processors. They interact with the agents in the main net�work and with one another in order to collectively carry out their task.

From declarative point of view, hypothesis-agents carry three main pieces of in�for�ma�tion, each stored in a specific slot. The first two slots contain the two entities being mapped. They are called hypothesis el�ements. The hypothesis-agent as a whole represents the hypothesis that the first element (from one situation) corresponds to the second el�ement (from another situation). The ac�ti�va�tion level of the agent represents the degree of credibility that the model attributes to the hypothesis at the moment.

The third slot of a hypothesis-agent contains its justification(s). The justification of a hypothesis is the reason for which it has been created  and is being maintained by the sys�tem. For example, one possible justification of the hypothesis that teapot-1 corresponds to glass-2 is that both are liquid holders. In Ambr, each hypothesis must have a justification. (This is one big difference be�tween Ambr and ACME, which constructs hypotheses for all possible correspondences.)

There are two kinds of justifications: semantic and structural. A given hypothesis has semantic justification when its two elements are semantically similar. Such justifications are established by the marker-passing mechanism. Two instances are considered semantically similar when they have a common super�class (subsection 4.3.2.). Thus, teapot-1 and glass-2 are semantically similar because they both belong to the class of liquid holders. Teapot-1 and plate-1 are semantically similar too due to the common superclass aftifact. On some occasions, Ambr2 can construct hypotheses be�tween almost any two entities. This happens when the domains of the two situations are very remote and hence the marker-passing process finds an intersection in some very abstract node such as object, relation, etc. For example, tumor could be mapped to fortress. Such occasions are rare — usually the markers intersect earlier.

The second kind of justifications are the structural ones. A given hypothesis can have such justification when there is another hypothesis which interlocks with the first. For example, the hypothesis that two relations correspond justifies the hypotheses that the arguments of these relations also correspond and vice versa. Structural justifications are established by the structure-correspondence mechanism (sub�section 4.3.4.).

Semantic justifications are always represented by concept-agents; structural justifications — by hypothesis-agents. It is possible (and frequent) that a hypothesis has several justifications. For instance, the hypothesis teapot-1<-->glass-2 could be justified by liquid-holder (semantic) and by color-of-1<-->made-of-5 (structural). In Ambr2, this particular hypothesis will be represented in the following way:

teapot-1<-->glass-2:

	:type	(hypothesis temporary)

	:t-link   ((teapot-1<-->cup-4 -1.0)

			 (teapot<-->glass  +0.5) )

	:slot1

	  :c-coref  teapot-1

	:slot2

	  :c-coref  glass-2

	:slot3

	  :c-coref (liquid-holder color-of-1<-->made-of-5)

Figure 4.3.3.3. Example of a hypothesis-agent. It represents the hypothesis that teapot-1 corresponds to glass-2. There are two justifications for this correspondence. Compare with figure 4.2.3.

Figure 4.3.3.3. shows only the symbolic aspect of the hypothesis. In addition, there is a con�nec�tion�ist aspect (as always in Dual). The references to hypothesis el�ements and justifications are also links that transmit ac�ti�va�tion. In this way, the hypothesis participates in the process of spreading activation. It supports its elements and in turn is supported by them. There are also mutually excitatory links be�tween a hypothesis and its justification(s).

Finally, there may be temporary links (t-links) that connect the hypothesis with other hypotheses. These links may be excitatory (for coherent hypotheses) or inhibitory (for conflicting hypotheses). They are invisible to the symbolic aspect of the archi�tec�ture and are used for the purposes of settling the constraint-satisfaction net�work only.

Temporary links with negative weights� deserve special comment. They embody the one-to-one constraint in analogical mapping. This constraint pushes the CSN towards a solution in which an el�ement X from situation 1 is mapped to at most one el�ement from situation 2. There is a strong pressure that the same el�ement X should not be mapped to two or more elements, e.g., Y and Z. Thus, the hypotheses X<-->Y and X<-->Z are contradictory and should be connected with inhibitory links.

A problem arises at this point. The constraint-satisfaction network in Ambr2 is built by an emergent process. There is no central executive that goes through all hypotheses, identifies conflicting ones and puts inhibitory links be�tween them. Rather, hypotheses are constructed one by one and the creator of each hypothesis has access only to local in�for�ma�tion. Under such circumstances, how does the hypothesis X<-->Y ‘know’ that there is a rival hypothesis (e.g. X<-->Z) to compete with?

The answer to this question is: The hypothesis will ‘ask’ the secretary of X.

4.3.3.3. Secretaries

Each entity-agent has a secretary associated with it. The secretary is not a separate agent; it is part of the entity-agent itself. The term secretary is used conventionally to refer to that particular part of a concept- or instance-agent that keeps track of the correspondences in which the agent is involved. Sometimes, we will use the term boss to refer to the other part of the entity agent, i.e. the part not related to correspondences. It should be remembered, however, that the secretary and the boss are two faces of one and the same micro-agent.

The job of a secretary is twofold: it keeps record of correspondences involving its boss and it handles hypothesis-registration requests. To that end, each entity-agent is equipped with a slot and a few symbolic routines. The slot is labeled hypoth and is filled with references to all hypothesis-agents that have the entity-agent as element. The same references are used as links that transmit ac�ti�va�tion from the agent (e.g. teapot-1) to its hypotheses (e.g. teapot-1<-->glass-2 and teapot-1<-->cup-4).

One of the first things that a hypothesis-agent does after its creation is to send hypothesis-registration requests to the respective secretaries. Hypothesis-registration requests (or HR-requests for short) are symbolic structures exchanged be�tween Ambr agents in the course of their in�ter�ac�tion. Each of the two secretaries receives the request and sends a secretary answer to the hypothesis. There are several kinds of answers but basically all they could be aggregated into the following two major types:

	‘Resign’ — this answer means that the new hypothesis-agent represents a tentative correspondence that already is represented by another hypothesis-agent. In other words, the new hypothesis is a duplicate of an older one. Such duplicate hypotheses are created because there usually are more than one justifications for a given correspondence. For example, the marker-passing mechanism could construct the hypothesis teapot-1<--> glass-2 on the grounds that both are liquid holders. Later on, the structure-correspondence mech�an�ism could independently construct the same hypothesis on the grounds that teapot-1 and glass-2 are corresponding arguments in corresponding relations. This second hypothesis is conceptually identical with the first but will be represented by a dif�fer�ent agent. Let us suppose (as is actually implemented in the program) that the name of the second hypothesis-agent is teapot-1<-1->glass-2. When it tries to register at the secretary of teapot-1, the latter will reply with an answer of type ‘Resign’.

	‘Establish’ — this answer means that the hypothesis-agent represents a novel hypothesis that does not coincide with any existing one. In the example above, the first hypothesis — teapot-1<-->glass-2 — would receive such answer to its HR-request.

Secretary answers carry more in�for�ma�tion than the simple resign/es�tablish distinction. Answers of type ‘Resign’ carry a reference to the favorite — the hypothesis-agent in favor of which to resign. Answers of type ‘Establish’ carry a (possibly empty) list of references to rival hypotheses.

4.3.3.4. Life Cycle of Hypothesis-Agents

Hypothesis-agents analyze the answers from the secretaries and act according to their directives. Due to the possibility of answers of type ‘Resign’, a new hypothesis is not guaranteed from the beginning that it has raison d’etre. It may be a duplicate of an existing hypothesis.

Therefore, Ambr2 distinguishes two types of hypothesis-agents: embryos and mature hypotheses. Each hypothesis-agent starts its life cycle as an embryo. Later on, it either resigns in favor of some other hypothesis or establishes and becomes mature. In more detail, the life cycle is the following:

The main rule for hypothesis construction in Ambr2 is that each hypothesis must have a justification. There are two possibilities for construction of a hypothesis-agent: by the marker-passing and by the structure-correspondence mechanism.

The marker-passing mech�an�ism creates hypotheses on the basis of semantic similarity. When two markers starting from dif�fer�ent origins (e.g. teapot-1 and glass-2) intersect at some conceptual node (e.g. liquid-holder) the latter detects the marker intersection and initiates the process of hypothesis-construction. It recruits one of the specialized node constructors (see section 3.2.6.1.) and sends a node-construction request describing the ‘specifications’ of the new hypothesis. The node constructor constructs a new embryo hypothesis and fills in its slots. The el�ements of the new hypothesis are the origins of the two markers; the justification is the concept where the markers intersected.

The structure-correspondence mech�an�ism creates new hypotheses on the basis of some existing hypothesis (see section 4.3.4.). In such cases, the old hypothesis becomes justification of the new one. Again, new agents are constructed by sending specific request to a node constructor.

One way or the other, the new embryo hypothesis is created and begins its life cycle. It sends hypothesis-registration requests to the secretaries of its two el�ements and waits for the answers. Usually, the two answers are the same — either both are ‘Establish’ or both are ‘Resign’. The embryo takes corresponding actions, respectively. Sometimes the secretaries disagree in their answers. This is possible due to the asynchronous and parallel nature of Dual interactions. Embryo hypotheses are equipped with procedural knowledge for resolving the ambiguities.

When it turns out that the new embryo hypothesis is a duplicate of an existing hypothesis (called favorite), the former resigns in favor of the latter. The resigning hypothesis hands over to the favorite all its declarative knowledge and in particular its justification. Having done that, it fizzles out. In the end, there is one hypothesis-agent with two justifications instead of two separate hypotheses with one justification each. This is the mechanism that allows for multiple justifications of the hypotheses in Ambr2.

If the analysis of secretary in�for�ma�tion reveals that the embryo hypothesis represents a novel correspondence be�tween two elements, the embryo establishes itself and becomes a mature hypothesis. From now on, its main goals are to win the competition with alternative hypotheses and to sprout out children.

The first goal is pursued by creating inhibitory links with the rivals. (The hypothesis receives a list of its rivals from the secretaries.) For fair play, the new agent sends its reference to all competing hypothesis, prompting them to establish symmetric inhibitory links.

4.3.3.5. The Constraint-Satisfaction Network

The mech�an�isms described so far gradually build many hypothesis-agents and establish connections be�tween them. In this way, a constraint-satisfaction network emerges. The CSN is a formation (section 3.4.) of agents that cooperatively solve a constraint-satisfaction problem. Each agent in the net�work represents a particular correspondence be�tween two el�ements. The CSN is integrated with the main net�work that stores conceptual and episodic in�for�ma�tion in Ambr2. Thus, they become complementary parts of the big integrated net�work of agents that comprise the model as a whole.

The CSN involves the following kinds of links:

	LTM—>CSN: Links from instance- and concept-agents (e.g. teapot-1) to the respective hypothesis-agents (e.g. teapot-1<-->glass-2). These links are excitatory and are stored in hypoth slots of entity-agents.

	LTM—>CSN: Links from concept-agents (e.g. liquid-holder) to the hypothesis-agents that are justified by them (if any). These links are excitatory and are stored in t-link slots of concept-agents.

	CSN—>LTM: Links from hypotheses to their elements and semantic justifications. These links are excitatory and are stored in S-slots of hypothesis-agents.

	CSN—>CSN: Links from a hypothesis to its structure-correspondence children (if any). These links are excitatory and are stored in t-link slots.

	CSN—>CSN: Links from a hypothesis to its structural justifications (if any). These links are excitatory and are stored in S-slots.

	CSN—>CSN: Links between competing hypotheses. These links are symmetric, have negative weights, and are stored in t-link slots of hypothesis-agents.

The constraint-satisfaction net�work thus embodies the three constraints posited by the multiconstraint theory.  The structural constraint is manifested in categories 4, 5, and 6 above. The semantic constraint appears in category 2, and the pragmatic one — in categories 1 and 2. Note that besides the links discussed here, Ambr2 has additional mech�an�isms for enforcing the constraints.

The links from the CSN to the rest of the net�work (category 3) deserve special attention.  Through these links, the constraint-satisfaction mechanism can influence the pattern of ac�ti�va�tion in the main net�work and hence everything in the archi�tec�ture. This fact has important implications for the integration be�tween analogical mapping and retrieval.

Hypothesis ac�ti�va�tion func�tion. Hypothesis-agents are special in that they receive not only excitatory but also inhibitory input from their neighbors. They have two separate input zones — enet and inet (see section 3.2.4.1.). The two con�nec�tion�ist inputs are combined with the current ac�ti�va�tion level of the agent to determine the change of ac�ti�va�tion. The change of ac�ti�va�tion is governed by a continuous modification of Grossberg’s ac�ti�va�tion rule.

In the original version of Grossberg’s func�tion (Grossberg, 1978), the ac�ti�va�tion can take both positive and negative values. The specification of Dual, however, postulates that all agents in the archi�tec�ture have non-negative ac�ti�va�tion func�tions. Therefore, Ambr2 uses a linear transformation of hypothesis’ ac�ti�va�tion. In this way, even hypotheses that are considered implausible have positive ac�ti�va�tion levels. The parameters of the model can be chosen in such a way that only the most suppressed hypotheses fall below the general working-memory threshold and are thus purged out of the system. Figure 4.3.3.5. illustrates.





Figure 4.3.3.5. Schematic illustration of the linear transformation that makes hypothesis ac�ti�va�tion func�tion positive. Only the most implausible hypotheses fall below the threshold (. See text for details.

Hypothesis output func�tion. Hypothesis-agents are also characterized by a specific output function. Moreover, it is different for embryo hypotheses and mature hypotheses. Embryo hypotheses do not influence their neighbors at all. (In other words, their output func�tion is the constant zero.) The reason for this decision is that some embryo hypotheses resign shortly after their creation. If they do not resign, however, they become mature and their output func�tion changes. Mature hypotheses have a threshold output func�tion. That is, they influence their neighbors only if their (unmodified) ac�ti�va�tion level is positive.

4.3.3.6. An Example

As an example of the mech�an�isms discussed so far, and in preparation for the structure-correspondence mech�an�ism that comes next, this section provides an excerpt of the transcript of an actual Ambr2 run. Only the events related to teapots and liquid holders are shown. Agent names are prefixed by ‘#$’. ‘#<M ...>’ denotes a marker, ‘#<NCR ...>’ — a node-construction request, ‘#<HR ...>’ — a hypothesis-registration request, and ‘#<SA ...>’ denotes a secretary answer.

The example illustrates construction of a hypothesis by the marker-passing mechanism, followed by secretary inquiries. The story begins by attaching the instance-agent teapot-4 to the input list. The ac�ti�va�tion spreads from there and brings the concepts teapot and liquid-holder to the working memory together with a few other instances. Whenever an instance-agent enters the WM, it emits a marker (section 4.3.2.). These markers propagate through the network and the first marker intersection happens at time 3.10 :

At time 0.00, adding #$teapot-4 to the input list.

At time 0.20, adding #$teapot to WM.

At time 0.20, #<M1 TEAPOT-4> received in the input zone of #$teapot-4.

At time 0.20, #$teapot-4 begins working on #<M1 TEAPOT-4>.

At time 0.30, #<M1 TEAPOT-4> received in the input zone of #$teapot.

At time 0.40, adding #$teapot-1 to WM.

At time 0.40, adding #$liquid-holder to WM.

At time 0.40, #$teapot begins working on #<M1 TEAPOT-4>.

At time 0.80, #<M1 TEAPOT-4> received in the input zone of #$liquid-holder.

At time 1.00, #$liquid-holder begins working on #<M1 TEAPOT-4>.

At time 1.90, adding #$teapot-3 to WM.

At time 2.00, #<M0 TEAPOT-1> received in the input zone of #$teapot-1.

At time 2.10, #$teapot-1 begins working on #<M0 TEAPOT-1>.

At time 3.00, #<M0 TEAPOT-1> received in the input zone of #$teapot.

At time 3.10, #$teapot begins working on #<M0 TEAPOT-1>.

At time 3.10, #<M1 TEAPOT-4> and #<M0 TEAPOT-1> intersected at #$teapot.

Thus, the associative mechanism has retrieved some information related to teapot-4 and the marker-passing mech�an�ism has detected that teapot-4 and teapot-1 are semantically similar. (The names of the agents play no role in this process.) On the grounds of this semantic similarity, the agent teapot recruits a node-constructor and sends a node-construction request to it:

At time 3.40, #<NCR TEAPOT> received in the input zone of #$nc3.

At time 3.50, #$nc3 begins working on #<NCR TEAPOT>.

At time 4.20, creating a new agent: #$teapot-4<-->teapot-1

At time 4.20, adding #$teapot-4<-->teapot-1 to WM.

At time 4.20, adding a :T-LINK link from #$teapot to #$teapot-4<-->teapot-1 with weight 0.100

At time 4.60, #<M0 TEAPOT-3> received in the input zone of #$teapot-3.

At time 4.70, #$teapot-3 begins working on #<M0 TEAPOT-3>.

A new embryo-hypothesis named teapot-4<-->teapot-1 was born. It has resulted from the joint effort of a co�ali�tion of agents: teapot-4, teapot-1, teapot, and nc1. Meanwhile, the associative and marker-passing mech�an�isms continue to work, preparing the ground for a rival hypothesis involving teapot-3.

We will focus on the first hypothesis, however. It receives ac�ti�va�tion from its parent (note the t-link at time stamp 4.20) and thus has the energy necessary for its symbolic processor. The embryo sends hypothesis-registration requests to the secretaries of teapot-1 and teapot-4. They check their record, notice that this is the first hypothesis that registers, and reply positively�. This is good news for teapot-4<-->teapot-1. It becomes a mature hypothesis at time 6.40:

At time 5.40, #<HR TEAPOT-4<-->TEAPOT-1> received in the input zone of #$teapot-1.

At time 5.50, #$teapot-1 begins working on #<HR TEAPOT-4<-->TEAPOT-1>.

At time 5.60, #<HR TEAPOT-4<-->TEAPOT-1> received in the input zone of #$teapot-4.

At time 5.70, #$teapot-4 begins working on #<HR TEAPOT-4<-->TEAPOT-1>.

At time 5.70, #<SA nil> received in the input zone of #$teapot-4<-->teapot-1

At time 5.80, #$teapot-4<-->teapot-1 begins working on #<SA nil>.

At time 6.00, adding a :HYPOTH link from #$teapot-4 to �(#$teapot-4<-->teapot-1 . :SLOT1) with weight 0.100

At time 6.30, #<SA nil> received in the input zone of #$teapot-4<-->teapot-1

At time 6.40, #$teapot-4<-->teapot-1 begins working on #<SA nil>.

At time 6.40, establishing hypothesis #$teapot-4<-->teapot-1.

As it has reached maturity now, teapot-4<-->teapot-1 starts generating new hypotheses. In this particular case, the structure-correspon�dence mech�an�ism (section 4.3.4.) will propose the hypothesis teapot<==> teapot on the grounds that if two instances correspond, their respective concepts should also correspond.

Note that the structure-correspondence mech�an�ism runs in parallel and in implicit competition with marker-passing. The latter generates an alternative hypothesis at time 8.00. Meanwhile, the associative mech�an�ism proceeds in the background, bringing the concept glass to the working memory. Glasses are liquid holders, so one can expect hypotheses mapping teapots to glasses later on. At this point, however, Ambr2 gives preference to tentative correspondences be�tween two teapots. If for some reason these hypotheses prove inappropriate, alternative candidates (e.g. about glasses) could potentially supplant them. If, however, the initial hypotheses turn out adequate, little resources will be spent on exploring alternatives. This illustrates the idea of dynamic emergent computation and its utility for constructing models that are efficient and flexible in the same time (section 4.1.2.).

At time 6.70, adding #$glass to WM.

At time 6.80, #<M0 TEAPOT-3> received in the input zone of #$teapot.

At time 6.90, #$teapot begins working on #<M0 TEAPOT-3>.

At time 6.90, #<M1 TEAPOT-4> and #<M0 TEAPOT-3> intersected at #$teapot.

At time 6.90, #$teapot-4<-->teapot-1 begins bottom-up SC.

At time 7.20, #<NCR TEAPOT> received in the input zone of #$nc8.

At time 7.30, #$nc8 begins working on #<NCR TEAPOT>.

At time 8.00, #<NCR TEAPOT-4<-->TEAPOT-1> received in the input zone of #$nc5.

At time 8.00, creating a new agent: #$teapot-4<-->teapot-3

At time 8.00, adding #$teapot-4<-->teapot-3 to WM.

At time 8.00, adding a :T-LINK link from #$teapot to #$teapot-4<-->teapot-3 with weight 0.100

At time 8.10, #$nc5 begins working on #<NCR TEAPOT-4<-->TEAPOT-1>.

At time 8.20, adding a :HYPOTH link from #$teapot-1 to�(#$teapot-4<-->teapot-1 . :SLOT2) with weight 0.100

At time 8.80, creating a new agent: #$teapot<==>teapot

At time 8.80, adding #$teapot<==>teapot to WM.

...

4.3.4. Structure-Correspondence Mechanism

The structure-correspondence (SC) mech�an�ism generates new hypotheses on the basis of existing hypotheses. It is carried out by mature hypothesis-agents. Their symbolic processors are equipped with routines specialized for the task.

 There are two major types of SC, conventionally termed bottom-up SC  and top-down SC.

4.3.4.1. Bottom-up Structure Correspondence

Bottom-up SC takes place when there is a hypothesis involving two instance-agents. More precisely, it happens when there is a mature hypothesis whose el�ements have the tag instance as one of the fillers of their type slots (see section 4.2.1.). Under these circumstances, the symbolic processor of the hypothesis chases the inst-of links of the two instance-agents and retrieves their respective concepts. For example, if the two instances are teapot-1 and glass-2, the concept-agents will be teapot and glass, respectively. Then, the original hypothesis initiates a process for constructing a supplementary hypothesis stating a parallel correspondence be�tween the two concepts. The new hypothesis is constructed in the usual way — by sending request to one of the node-constructors in the sys�tem. The original hypothesis becomes the justification of the new one.

It frequently happens that the new hypothesis is not really new — the same concepts have been already put into correspondence by an earlier invocation of the structure-correspondence mech�an�ism. For example, the hypothesis teapot-1<-->glass-2 generates the supplementary hypothesis teapot<-->glass. After a while, another hypothesis, e.g. teapot-3<--> glass-2 constructs the same ‘conceptual’ hypothesis. In such cases, the duplication is detected by the secretaries and the second ‘conceptual’ hypothesis resigns in favor of the first. Eventually, teapot<-->glass will have two justifications and there will be appropriate excitatory links. The net result of this process is that the overall degree of connectivity in the constraint-satisfaction net�work is enhanced.

The mech�an�ism of bottom-up SC creates a pressure that correspondences at the instance level should be coherent with correspondences at the concept level. Stated differently, the mapping of two instances facilitates mapping of the classes to which they belong and vice versa.

There is a second variant of the mechanism for bottom-up SC. It is very similar to the variant described above except that it deals with the situations to which the instances belong rather than with their classes.

In Ambr2, a target situation is mapped to several different bases simultaneously. For concreteness, suppose that there are two bases denoted B1 and B2, and a target T. Suppose further that the elements of B1 are a, b, c; that of B2 — m, n, p, q; and of T — x, y, z. Then, correspondences of the form a-z, c-x, b-y, etc. will support B1-T; while m-x, q-y, and m-z will support B2-T (and vice versa).

This second variant of the bottom-up SC creates a pressure that situations are mapped as units. Blends are possible but they happen only when are truly warranted. Normally, the model tries to keep the mapping within the scope of two situations only: the target and a single base.

To that end, Ambr2 has added a new slot label to the vocabulary of general-slot labels in the archi�tec�ture (section 3.2.3.4). If a micro-agent possesses a slot labeled situation, this indicates that the agent belongs to the situation (or episode, schema, problem) denoted by the filler of this slot.

The introduction of situation slots does not compromise the notion of decentralized representations discussed in section 4.2.4.2. Yes, there is an agent of type situation which is referenced by situation slots of individual members. This agent, however, does not represent the situation as a whole. Rather, it serves as a common reference to the spatio-temporal unity of the elements. It incarnates the fact that these particular objects and relations happened to be observed together within relatively short period of time.

The situation agent need not have links pointing ‘downward’ to the agents representing individual objects and propositions. (It could have links to some of them but this is not necessary.) The links are in the opposite direction: from individual el�ements to the situation agent. Moreover, these links are optional — it is possible to have a ‘free-standing’ el�ement that does not belong to any situation (or belongs somewhere but does not ‘know’ that). Such agent will not have a situation slot and will not be affected by the mech�an�ism for bottom-up structure-correspondence.

4.3.4.2. Top-down Structure Correspondence

Top-down SC is present in one form or another in all models of analogy-making. It captures an important aspect of the structural constraint as posited by Gentner (1983) and Holyoak & Thagard (1989): When two propositions correspond, it is highly desirable that their respective arguments also correspond.

The difficulties begin with the disambiguation of the phrase ‘respective arguments’ above. Some models (e.g. Falkenhainer et al., 1986) walk around this difficulty by assuming that the enumeration of the arguments in a proposition can be meaningfully transferred to another proposition. From our point of view, this approach seems too conservative and psychologically implausible. In contrast, Holyoak & Thagard (1989) follow an approach that seems too liberal — they consider all possible argument pairs.

 Thanks to the elaborated knowledge-representation scheme adopted in Dual (Kokinov, 1992), Ambr does not have great dif�ficulties with this problem. Each argument is represented by a separate S-slot  with many facets. One of these facets points to the respective slot in the parent concept as illustrated in Figure 4.2.3. This greatly facilitates the structure-correspondence mech�an�ism and relieves the model of implausible assumptions. Moreover, it makes possible to map propositions with dif�fer�ent number of arguments (Kokinov, 1994a; Hummel & Holyoak, 1997).

The details of the top-down structure correspondence in Ambr2 are the following: The symbolic processor of each mature hypothesis checks whether the two elements are propositions. The criterion is whether they contain the tags instance and relation among the fillers of their type slots (section 4.2.1.). If this is the case, the symbolic processor attempts to determine the slot-to-slot correspondences. To that end, it needs the so called pivot concept.

The pivot concept is a concept which is a common super�class of both relations. For example, if the propositions are instances of the relations in and on, the pivot concept could be in-touch, asymmetric-binary-relation, or something else depending on the particular problem and context.

The pivot concept is often identified by the marker-passing mechanism. When such in�for�ma�tion is available, the symbolic processor of the ‘proposition’ hypothesis generates the appropriate ‘argument’ hypotheses. When such in�for�ma�tion is not available, the symbolic processor checks for the obvious (and frequent) case when both propositions are instances of the same relation. In other words, it checks whether the inst-of slot of the two instances point to the same concept-agent and uses the latter as a pivot concept when this is true. Otherwise, it gives up and stops, hoping that the MP mech�an�ism will provide the missing in�for�ma�tion later.

4.4. The Mechanisms at Work

This final section of the chapter devoted to Ambr2 pulls everything together and shows how the computational mech�an�isms described above can be applied to the task of analogy-making�.

4.4.1. General Sequence During a Run

In the present version of Ambr2, the work on a problem begins with a hand-coded representation of the target situation. Some of the agents that participate in the (decentralized) description of this situation are attached to the special nodes that are sources of ac�ti�va�tion in the model. The goal element(s) are attached to the goal node; some of the other el�ements are attached to the input node, thus mimicking the perceptual mech�an�ism. The input list can also include el�ements that do not belong to the target situation, thus modeling the effect of the external context. It is possible (though not experimented yet) that target elements are presented to the sys�tem not simultaneously but incrementally. In this way, various order effects can be demonstrated (Keane et al., 1994).

Once the target el�ements are connected to the source nodes, the associative mech�an�ism begins to operate. The activation spreads through the long-term memory of the sys�tem and brings relevant conceptual and episodic in�for�ma�tion to working memory. Shortly after, the marker-passing mech�an�ism joins in, as instance-agents emit markers upon entering the WM. The markers begin propagating the active portion of the net�work.

Marker intersections provoke the construction of hypothesis-agents, thus triggering the constraint-satisfaction mechanism. After consulting the secretaries, the hypotheses initiate the structure-correspondence mech�an�ism. In this way, all mechanisms in the model are put to work. They operate in parallel and in tight cooperation with one another.

Gradually, a number of agents enter the working memory. The activation does not spread unrestricted, however, and the intensity of memory retrieval declines as the decay of ac�ti�va�tion prevents the nodes that are too far away from passing the threshold. Usually, two or three situations are retrieved in full and a few others only partially. These are the candidates for base analogs. In addition, the relevant concept-agents are also active and ready to guide the mapping.

 The associative mech�an�ism never stops completely because agents occasionally get in or fall out of the working memory. Moreover, the associative mech�an�ism is responsible for controlling the speed of the symbolic aspect as well as for settling the constraint-satisfaction net�work.

Meanwhile, the marker-passing mechanism has generated several hypotheses. In turn, they have created additional hypotheses via the structure-correspondence mech�an�ism. The constraint-satisfaction network has thus become fairly elaborate and winning correspondences begin to emerge. The hypotheses standing for such correspondences become highly active and provide strong support for the respective entities in the main net�work. In this way, the base situations that best satisfy the constraints are fully and unambiguously retrieved.

Sooner or later, the system approaches a resting state. The pattern of ac�ti�va�tion stabilizes. The markers cover all the ‘territory’ that has been made available by the associative mechanism and, therefore, no more marker intersections are reported. The structure-correspondence mech�an�ism also stops. Finally, the relaxation of the constraint-satisfaction net�work completes and the ‘answer’ of the system can be read from the ac�ti�va�tion levels of winning hypotheses. (In fact, the system maintains a ‘working answer’ throughout the whole run. It is often unnecessary to wait for the end.)

It should be emphasized that everything described so far happens as a result of a dynamic emergent process. There is no central executive that controls the operation of the system. Instead, a multitude of micro-agents interact with their immediate neighbors and their local activities give rise to macroscopic phenomena that an external observer could interpret as analogical retrieval, mapping, etc.

4.4.2. Integration Revisited

� EMBED Word.Picture.6  ���

At the outset of this thesis, the notion of integration was declared to be the prime mover of Dual and Ambr. It is instructive to take a look back from the point of view of the closing section. Integration is everywhere! The list below traces its manifestations in the archi�tec�ture and the model.

	Dual has two aspects — con�nec�tion�ist and symbolic — and they are integrated within and across all levels of the archi�tec�ture.

	Dual has two more aspects — declarative and procedural — and they are integrated within and across all levels of the architecture.

	All knowledge in the archi�tec�ture is represented within a unified framework that takes into consideration all aspects cited above.

	All in�for�ma�tion-processing in the archi�tec�ture operates according to unified principles that take into account all aspects cited above.

	Ambr has a handful of interlocking mech�an�isms which cooperatively solve the problems within its scope.

	Ambr offers a unified account of analogical retrieval and mapping.

�	To give the word to Drew McDermott (1981): “If a thorough report on a mere actual implementation were required, or even allowed, as a Ph.D. thesis, progress [in AI] would appear slower, but it would be real.” (See section 1.4. for a bigger quotation.)

�	With respect to this, the following excerpt from (Thagard et al., 1990) is quite instructive: ‘Because of their ubiquity and context independence, the following predicates are not used as retrieval cues: cause, if, conjoin-object, conjoin-event, become-true, become-false.’ (p.274)

�	Indeed, the first version of Ambr (Kokinov 1994a) used such void names. It was very instructive from a philosophical point of view as it laid bare how little ‘knowledge’ the program actually had. It was not very practical, however, because it hindered enormously the process of developing, tuning, and documenting the model.

�	This restriction does not diminish the expressive power of the representation scheme because the complex cases can be handled through c-coref links.

�	Therefore, it could also be said that Ambr2 uses a modified version of the func�tion proposed by McClelland & Rumelhart (1981). The two func�tions are equivalent for non-negative inputs. See also section 4.3.3.5.

�	By the way, these are the only links with negative weights in Ambr2.

�	Despite the appearance, a secretary answer of the form #<SA nil> is a positive answer. NIL means in this case that the list of rival hypotheses is empty.

�	It is argued (Kokinov, 1994a) that the same mech�an�isms can be applied to other tasks as well. This, however, is beyond the scope of the present thesis.
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