Chapter V


Simulation Experiments


This section reports the results of the simulation experiments performed with Ambr2. The general setting of the experiments is presented first. Then, one particular run of the program is considered in some detail. Finally, there are aggregate statistics for the performance of the model over 600 runs.


5.1. Experimental Setting


Dual is a deterministic archi�tec�ture. The behavior of a Dual-based model (such as Ambr2) depends on three factors: (i) the contents of the long-term memory of the sys�tem, (ii) the target problem, and (iii) the external context. Kokinov (1994a) reports an experiment exploring the influence of the third factor — one target problem was solved several times with dif�fer�ent preliminary settings and dif�fer�ent agents attached to the input list. The experiments reported here concentrate on the first two factors — six target problems were run on one hundred knowledge bases, yielding a total of 600 runs.


5.1.1. Materials


The problems presented to the sys�tem belong to the domain of heating or cooling liquids. Each problem consisted of a simple situation. There was a total of 11 situations. 5 of them (denoted A, B, C, D, E) were used as source analogs:


Situation A: There is a teapot and some water in it. The teapot is made of metal and its color is black. There also is a plate and the teapot is on it. The plate is hot. This state of affairs causes that the water becomes hot.


Situation B: There is a bowl and some water in it. The bowl is made of wood and is placed on a fire. The fire is hot. This state of affairs causes that the bowl burns out and the water dissipates.


Situation C: There is a glass and some water in it. The glass is made of glass. There is an immersion heater in the water. The immersion heater is hot. This state of affairs causes that the water becomes hot.


Situation D: There is a glass and some water in it. The glass is made of glass and its color is white. The glass is on a plate and the plate is hot. This state of affairs causes that the glass breaks and the water dissipates.


Situation E: There is a teapot and some milk in it. The teapot is made of metal and its color is green. There also is a refrigerator and the teapot is in it. The refrigerator is cold. This state of affairs causes that the milk becomes cold.


These situations were coded by hand according to the knowledge representation scheme used in Ambr2 (section 4.2.) and included into the long-term memory of the system. The representation of one situation took 13-16 Dual agents.


In addition to that episodic knowledge, some semantic knowledge was put into the LTM too. For example, it was represented that hot, warm, and cold are instances of the class temperature-qualifier; that in and on are spatial relations while temperature-of and made-of are physical relations; that teapots are usually made of metal, etc. Some associative links were added too. About 100 agents were used to represent this in�for�ma�tion.


Thus, the long-term memory of the sys�tem contained the 5 base situations and the semantic knowledge outlined above. This knowledge base was multiplicated one hundred times, with small variations in each case. The algorithm for generating the variants was chosen to emulate the outcome of the mechanism for connecting concepts to some of their instances proposed in section 4.1.3.4. Each knowledge base contained the same agents with some additional links. Most of these links were instance links from selected concept-agents to some of their respective instance-agents (selected at random). For example, in some particular variant of the knowledge base the concept teapot could be connected to the teapot participating in situation A (or E, or none of them). The remaining links were associative links be�tween selected agents. Each of these links occurred with some small probability.


The variants of the knowledge base generated in this way served as replications in the experiment. All parameters of the model were kept constant across all runs.  Each target problem was run on each knowledge base. Thus, it was possible to obtain a frequency distribution showing how many times a particular target situation was mapped to a particular episode from the LTM. The target situations were chosen in such a way that they can be plausibly mapped to several base analogs. The six target situations used in the experiment are outlined below:


Situation X: There is a bowl and some water in it. The bowl is made of wood. The goal is that the water becomes hot.


Situation Y1: There is a teapot and some milk in it. The teapot is made of metal. The goal is that the milk becomes hot.


Situation Y2: There is a teapot and some milk in it. The teapot is made of metal and its color is green. There also is a hot plate and the teapot is on the plate. What will happen?


Situation Z: There is a glass and some water in it. The glass is made of glass and its color is white. The goal is that the water becomes hot.


Situation U1: There is a teapot and some milk in it. The teapot is made of metal. The goal is that the milk becomes cold.


Situation U2: There is a teapot and some milk in it. The teapot is made of metal and its color is green. There also is a cold refrigerator and the teapot is in the refrigerator. What will happen?


5.1.2. Dependent Variables


A lot of data were recorded during each run. The data included the number of agents of dif�fer�ent kinds in the working memory, the number of marker intersections, the number of agents whose symbolic processor is active, the total activation of the working memory, etc. In addition, there was a number of indices for each situation, and in particular the retrieval and mapping indices described below.


Due to the decentralized representation of situations (section 4.2.4.2), it frequently happens that only part of their members pass the threshold and enter the working memory. In addition, the agents in the WM have dif�fer�ent ac�ti�va�tion levels. The retrieval index is intended to serve as an overall measure of the extent to which a given situation is present in the working memory. It is computed by the following formula:


R = � EMBED Equation.2  ���  ,


where the summation is taken over all members of a given situation, n is the total number of such agents, and ai is the ac�ti�va�tion level of agenti.


A complementary mapping index is defined to measure the strength of the mapping be�tween two situations. It is computed on the basis the ac�ti�va�tion level of the relevant hypothesis-agents (section 4.3.3.2.). Only mature hypotheses are considered. The mapping index can be computed for each situation in a pair (the two values will generally not be the same). For example, consider the mapping be�tween situations A and X. The mapping index from X to A is computed in the following way: (i) the total pool of all hypotheses is filtered, keeping only those mature hypotheses that relate an el�ement from X to an el�ement from A; (ii) these hypothesis-agents are sorted according to their ac�ti�va�tion levels; (iii) for each el�ement from X, the hypothesis with highest ac�ti�va�tion level is chosen; (iv) the mapping index is computed by the following formula:


M = � EMBED Equation.2  ���  ,


where the summation is taken over all relevant hypotheses for the particular pair of situations, n is the total number of el�ements of the first situation (in the example above, this would be situation X), and hj is the decoded (see section 4.3.3.5.) ac�ti�va�tion level of hypothesisj.


Each of these variables was recorded fifteen times at regular intervals during each run. This captures the dynamics of the operation of Ambr2.


5.2. A Case Study


This section presents the result of one particular run of the program. During that run, situation Y1 (boiling milk in a teapot) was used as target situation. The agents representing the goal of the problem — that the milk should become hot — was attached to the goal node of Ambr2. Some of the remaining members of the situation — the teapot, the relation that it is green, the relation that the milk is in the teapot, etc. — were attached to the input node. Then, the system was run for 150 units of simulated time, recording the values of the dependent variables at the end of each 10-unit interval.


Three of the five episodes stored in the LTM were retrieved in this case — situations C, D, and E. The retrieval indices for situations A and B stayed  zero (or almost zero) throughout the run. Figure 5.2.1. plots the retrieval indices for situations C, D, and E as a function of time.


The inspection of this graph reveals that situation E initially takes precedence over its rivals. This is due to the fact that it is the only situation among the bases that involves milk, and the concept milk is highly active because the target problem also involves milk. In addition, situation E involves a teapot (also present in the target), while the liquid holders in situations C and D are glasses. Thus, situation E is most similar to the target if only objects are considered. Therefore, this situation is in advantageous position early in the run — when the retrieval dominates the mapping.


On the other hand, the concepts hot and temperature-of become highly active because the goal of the target problem is to heat the milk. This pragmatic pressure, implemented by the flow of activation emitted by the goal node, brings situations C and D to the working memory. Situation A (heating water on a plate) does not get activated because in this particular knowledge base it happens to be no link from the concepts hot, temperature-of, etc. to the instances of this situation (see section 4.1.3.4.).
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Figure 5.2.1. Retrieval indices for situations C, D, and E as a function of time. At first, situation E takes the lead, but the final winner is situation C. The crossing of the two lines at time 25 is indicative of the interaction be�tween retrieval and mapping in Ambr2.


Meanwhile, the process of mapping gathers momentum. Each of the three episodes that have been retrieved from long-term memory is trying to map itself to the target. The dynamics of this process can be seen at Figure 5.2.2. which shows the mapping indices for the three situations as a func�tion of time. 


Note the spike at time 12. It reflects the early period of the construction of the constraint-satisfaction network. During this early period, the marker-passing mechanism has constructed some hypothesis-agents but they have not yet established the mutually inhibitory links that mediate the one-to-one constraint on mapping (section 4.3.3.5.). After the construction of the inhibitory links, all mapping indices decrease a bit. 


The bulk of the mapping process happens between time stamps 20 and 40. During this period, the three analogs compete with each other. Note the small jerks on the plots. They reflect the small changes in the mapping indices induced by the introduction of new hypotheses to the CSN. If all hypotheses in the net�work were created beforehand (as in ACME), the plots would have been smooth.


� LINK SPSSCHRT "C:\\EXPERMT\\CASE42Y1\\MAPIDX_T.CHT" "Contents" \p ���


Figure 5.2.2. Mapping indices for situations C, D, and E. See text for details.


It is especially instructive to compare the two plots, keeping in mind that Ambr2 is an integrated model of retrieval and mapping. Indeed, Figure 5.2.1. reveals that the trends in retrieval indices are reversed somewhere between time stamps 20 and 40. This is exactly the period when the mapping process is most intensive, as evident from Figure 5.2.2.


The analysis of figures 5.2.1. and 5.2.2. can be summarized as follows: Initially, the retrieval process gives preference to situation E due to its greater semantic similarity with the target. The pragmatic and structural constraints, however, eventually overcome this trend. Somewhere at time 40 the winner becomes clear — it is situation C. After that time stamp, the winner gradually assumes its power. At time 70, the sys�tem has virtually reached asymptotic state.


Here are the hypotheses that emerge as winners at time 70:	�sit-Y1<��>sit-c, teapot-Y1<-->glass-C, milk-Y1<-->water-C, made-of-Y1<-->made-of-C, mmetal-Y1<-->mglass-C, in-Y1<-->in-C, init-state-Y1<-->init-state-C, end-state-Y1<-->end-state-C, cause-Y1<-->cause-C, temper-of-Y1<-->temper-of-C, hot-Y1<--> hot-C; situation<-->situation, teapot<-->glass, milk<-->water, made-of<-->made-of, material-metal<-->material-glass, in<--> in, init-state<-->init-state, end-state<-->end-state, cause<--> cause, temperature-of<-->temperature-of, hot<-->hot.


5.3. Summary Over All Simulations


The previous section paid great attention to one particular tree but neglected the forest. This section takes the opposite tack. It presents the aggregate frequencies over all runs.


Each of the six target problems was run on each of the 100 knowledge bases for 150 time units. This time was enough for almost all runs to reach asymptote. At the end of each run, it was cycled through the target el�ements, collecting the correspondence with highest ac�ti�va�tion for each one. The base situation which had the most el�ements collected in this way was declared as a ‘winner’. Thus, a winner was identified for each run. The frequency distribution on targets versus winners is reported in Table 5.1.
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Figure 5.1. Frequencies of mappings be�tween target situations (rows) and source analogs (columns).


Table 5.1. reveals that Ambr2 constructs reasonable mappings in most of the cases. More concretely, problems about cooling milk (U1 and U2) tend to be mapped to situation E, which can be interpreted as a literal similarity match (Gentner, 1983). In about 20% of the cases in the last two rows, however, Ambr2 maps milk to water and cold to hot, thereby constructing an analogy. (The fact that this analogy fails to solve the problem is another matter.) Problems about heating milk (Y1 and Y2) show the reverse pattern. They tend to be mapped to situation A — the prototypical case for heating liquids.


Note that the frequency of mapping Y1 or Y2 to A is smaller than that of mapping U1/U2 to E (55 or 79% vs. 72 or 85%, respectively). This reflects the influence of the similarity constraint. During both retrieval and mapping, this constraint prefers correspondences of the form milk<--> milk to those of the form milk<-->water. It is remarkable that Ambr2, which is an entirely deterministic model, is capable of producing such frequency distributions when the sole random factor in the experiment is the variation of the knowledge base.


Table 5.1. also illustrates the fact that Ambr2 visits the implausible regions of the ‘problem space’ with some small probability. Few cells in the table are completely empty (the ‘ambiguous’ column notwithstanding) thus showing that no possibilities are ruled out a priory. Ambr2 generates ‘promising’ solutions most of the time and yet occasionally goes ‘off the beaten track’ (see section 4.1.2.).
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