Chapter III
Dual — A Hybrid �Cognitive Architecture
A cognitive architecture is a relatively complete proposal about the struc�ture of human cognition. As such, it has many things to specify: mental representations, information processing mech�an�isms, flow of control, etc. Therefore, the description of an architecture is usually long and com�plex. Dual makes no exception.
This chapter describes the Dual cognitive architecture. The presenta�tion begins with a general over�view of the basic terms and concepts used in Dual. It then continues with detailed descriptions at different levels of granularity.
3.1. Anatomy of Dual
3.1.1. Basic Terms
The basic structural and functional unit of Dual is the Dual agent. Due to its  importance, the Dual agent has synonymous names: micro-agent or simply agent. Other names like node and unit are used to bring connotations from other theories, notably semantic networks and connectionism. It is important to note that through�out this thesis all the afore�mentioned terms refer to the same concept: the Dual agent.
Dual agents are the smallest building blocks of Dual. Strictly speaking, in the archi�tec�ture there is nothing but agents of various kinds. They inter�act with one another and thus combine into larger com�plexes. The inter�actions between agents are very important in Dual because they keep the archi�tec�ture together. They are often reified and called links, especially in contexts where the agents are called nodes.
A major archi�tec�tural principle of Dual is that larger structures emerge from the interaction of smaller ones. Thus, one can consider building blocks of in�creasing size. Dual agents are at the beginning of this succession, followed by coalitions, and formations. There is no sharp boundary between the latter terms. As a rule of thumb, a coalition consists of a relatively small number (e.g. less than 20) of inter�connected Dual agents while formations are much bigger.
3.1.2. A Biological Analogy
We can be sure that the human mind is not to be explained by a small set of assumptions. There is no reason to suppose the mind is simpler than the body.
(Anderson 1983, p.42)
The organization of Dual is analogous to the orga�niza�tion of multi�cel�lu�lar biological organisms. This analogy brings forward many ideas that will facilitate the under�standing of Dual. Therefore, it is pre�sented here as an intro�duction to the more technical sub�sections that follow.
The basic structural and functional unit of most living organisms is the living cell. Higher organisms� are built of a huge number of cells. Each in�di�vid�ual cell is tiny and typically cannot live in isolation. Their coordinated acti�vities, however, produce amazing results.
Living cells combine into larger structures of increasing complexity. Thus, tissues consist of similar cells specialized to perform a specific func�tion. For instance, there are muscular, nerve, epithelial, and connective tissues. Organs are made up of different tissues which form a structural and functional unit. The collection of all organs with a common function is called a system. For example, the respiratory system in the human body con�sists of several organs, including the nose, the phar�ynx, the larynx, the trachea, and the lungs. Finally, the organism itself could be considered a higher-order sys�tem of all its sys�tems. At a lower level of abstraction, how�ever, it still consists of nothing but cells.
Most of these concepts have a counter�part in Dual as the following table demonstrates:
biological domain	Dual domain
living cell		Dual agent
tissue			coalition
organ			coalition, formation
system			formation
organism		system, model
This analogy should not be pushed too far. Besides the simi�lar�ities, there are big differences. In particular, the com�plexity in the bio�logi�cal domain over�whelmingly exceeds that in Dual. (On the other hand, Dual agents are more flexible than the cells in establishing interactions with their peers.) Still, the ana�logy has sug�gestive value:
There are features common to all living cells. These are their differ�en�tia specifica — the char�ac�ter�is�tics that make them what they are. To illus�trate, each cell has a cytoplasm, performs metabolism in order to stay alive, and originates from some other cell. Analogously, there are features shared by all Dual agents. These features define what a Dual agent is and thus are central to the description of the archi�tec�ture. Subsequent sections deal exten�sively with such features.
On the other hand, biological systems exhibit a vast diversity of living cells. They differ both in structure and func�tion. Structurally, cells are not atomic — they have parts called organelles. Some organelles are present in all cells while others are specific to a certain type. For example, all (eucariote) cells have nuclei but only green plant cells have chloroplasts needed for photo�syn�thesis. (This example also illustrates that the func�tion of a cell is closely related to its structure and vice versa.)
Similarly, Dual agents also come in varieties, differing in their purpose and internal organiza�tion. Agents are not atomic. As will be discussed later, they have parts like slots, acti�va�tion levels and so on. Some parts are common to all Dual agents while others are specific to a certain type. 
The diversity at the cellular level becomes even greater at upper levels. The same cells combine into dif�fer�ent ways to produce a variety of tissues, organs, and so on. Thus, the overall diversity of living organisms is due not only to the diversity in cell types but also to the innumerable possibilities of their combinations.
Analogously, Dual agents interact with one another. The same agents may build a number of dif�fer�ent coalitions depending on the pattern of inter�action between them. Moreover, this pattern changes in time, thus providing for even greater variety.
Further, different organisms have different cells. These differences are big across species and smaller within species, but nonetheless always present. This is true even for closely related individuals like a parent and a child. The geno�type is unique to each organism�. On the other hand, the general cell structure is invari�ant across all indi�viduals and species. To illustrate, all cells have nuclei but with differ�ent chromosomes.
Analogously, there could be many models, each built on top of Dual but with individual variations. The general architectural principles stay the same; the exact structures and behaviors embedded in each model differ. This chapter of the thesis deals with the general principles of Dual which are supposed to remain invariant across all Dual-based models. The next chapter will describe additional features that are specific to the Ambr2 model.
3.1.3. Levels of Description
Dual-based models are complex systems; biological organisms are even more so. Analysis of such systems must proceed at different levels of granu�larity. In anatomy, there are sub�disciplines devoted to the particular levels: cytology studies the cells, histology — the tissues, and so on. In dualogy — the study of Dual — there are no sub�disciplines but still it is useful to analyze the architecture with respect to the following three levels:
The microlevel (agent level) deals with Dual agents. Relevant topics here include the internal structure of a agent, its information-processing abilities, the differences among agents of different types, etc.
The mesolevel (coalition level) deals with coalitions of Dual agents. A coalition is a set of agents and a pattern of interactions among them. Coalitions have two very important properties: they are emergent and dynamic. Thus, the meso�level deals with the inter�actions between the Dual agents, the emergence of non-local phenomena out of local activities, the dynamics of the organiza�tion of Dual agents into coalitions, etc.
The macrolevel (system level) deals with formations of Dual agents and with whole models. Formations consist of big populations of agents and define the macro�scopic structure of Dual models. It is at this level where psycho�logical concepts like retrieval, mapping, and analogy start to play the lead. They help describe the over�all behavior of Dual-based models and to compare them with other cognitive models and with humans.
The table below summarizes the three levels used in the analysis of Dual and the corresponding basic concepts:
level of analysis	basic concept
micro-level		Dual agent
meso-level		coalition
macro-level		formation
These levels are not independent. In fact, it is impossible to tell them apart. To illustrate, any analysis of coalitions crucially depends on the properties of their individual members. Conversely, a large part of the de�scrip�tion of a Dual agent is devoted to its inter�actions with other agents. Changes made at one level propagate to neighboring levels, recursively. A major challenge of Dual’s design is to establish coherence not only within but also across levels. This requires thinking at multiple levels at once.
3.2. Dual at the Microlevel
This section describes Dual at the micro�level. At this lowest level of granularity, the entity of main interest is the Dual agent: its internal or�gan�iz�ation and operation, as well as the ways of interaction with its peers. Micro-agents are very important in Dual because everything in the architecture ultimately boils down to them and their inter�actions. They are the ‘building blocks’ that compose larger structures — coalitions, forma�tions, and sys�tems. Therefore, detailed and unambi�guous specification of this basic struc�tural and functional unit is fun�da�men�tal to the specification of the archi�tec�ture as a whole.
3.2.1. The Hybrid Nature of Dual agents
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Dual agents are hybrid entities. They bring together ideas that are usually considered in opposition. In Dual, opposites are not treated as irrecon�cil�able antagonists but rather as complementary aspects of a harmonious whole. This fundamental philosophical tenet penetrates the architecture and is especially evident in the hybrid nature of the micro-agents.
Moreover, Dual agents are hybrid in two ways. On one hand, they have both connectionist and symbolic aspects; on the other, they serve both as representational and processing units. These two dimensions are ortho�gonal and thus form the four aspects shown in Table 3.1.
�Representation�Processing��Connectionist aspect�activation �level�spreading activation��Symbolic �aspect�symbolic structures�symbol manipulation��Table 3.1. Different aspects of Dual agents. (Compare with table 3.2.)
From the connectionist perspective, each Dual agent is a unit in an arti�fi�cial neural net�work (Rumelhart & McClelland, 1986). It has an activa�tion level attached to it and continu�ously spreads activation to other agents. In this way, there is a pattern of activation over the population of Dual agents. This pattern changes dynamically as agents gain or lose activity.
From the perspective of the classical symbolic approach to cognitive modeling, Dual agents are symbols — they stand for some�thing else. Con�cretely, they represent various concepts, objects, relations, etc. In addition, to this representational aspect, there is a procedural one: agents mani�pulate on symbols. They can receive symbols from other agents, store them in local memories, trans�form them (thus producing new symbols) and so on. All this makes the symbolic aspect of Dual agents some�what complicated. On one hand, they are symbols; on the other, they can contain symbols and manipulate on them�.
It should be emphasized that all four aspects shown in Table 3.1 are tightly coordinated. The connectionist aspect influences the symbolic one and vice versa. Similarly, the procedural aspect depends on the declarative one and so on. This cohesion between the different aspects of a Dual agent ensures its integrity. The Dual agent is one hybrid entity rather than a combination of parts.
3.2.2. Interactions and Links
The presentation so far reveals that Dual agents inter�act intensively with one another. These interactions are very important because they are the fabric that combines micro-agents into larger complexes. Thus, they form the bridge from the microlevel to the meso- and macrolevels. More�over, in�ter�ac�tions are the key factor for the emergence of non-local phe�nomena out of local activities.
In�ter�ac�tions in Dual are relatively simple — they always involve only two micro-agents. Multi-agent co�ali�tions are tied up by a number of bi�lateral in�ter�ac�tions. More�over, in�ter�ac�tions are uni�directional. That is, only one of the participants in each in�ter�ac�tion plays an active role, the other one being passive or even ignorant.
3.2.2.1. Types of in�ter�ac�tions
Dual in�ter�ac�tions are of two kinds: a micro-agent can either ‘see’ some�thing from another agent or ‘say’ some�thing to it. Less metaphorically,  the first agent can read or send some in�for�ma�tion to the second agent. The type of the in�ter�ac�tion depends on which aspect of the second agent is involved. In in�ter�ac�tions of type read, the first agent reads the declar�at�ive aspect of the second; in in�ter�ac�tions of type send, the first agent sends some in�for�ma�tion to the procedural aspect of the second. In either case, it is the pro�cedural aspect of the first agent that carries out the in�ter�ac�tion.
To enable in�ter�ac�tions of type read, the declarative aspect of each Dual agent is public — all agents in the archi�tec�ture can potentially read it. The agent does not ‘notice’ whether, when, and who reads its declarative aspect. There�fore, the in�ter�ac�tion of type read is an extremely weak form of in�ter�ac�tion. In fact, one of the participants does not even notice its involve�ment in it at all.
To enable in�ter�ac�tions of type send, each Dual agent has a place where other agents can put in�for�ma�tion. This place is called input zone and is con�si�dered part of the procedural aspect of the Dual agent (see Fig. 3.2.2.1). Each agent in the archi�tec�ture can potentially send in�for�ma�tion to every�one else. The receiving agent does ‘notice’ whether and when some�thing is put into its input zone but cannot trace its origin. Thus, this second type of in�ter�ac�tion in Dual is also relatively weak, although less weak than the first type.


Figure 3.2.2.1. Schematic outline of the two types of Dual in�ter�ac�tions. The left micro-agent reads the declarative aspect of the right micro-agent and sends in�for�ma�tion to its input zone.
The current specification of the archi�tec�ture does not provide for any other types of in�ter�ac�tions. In particular, Dual agents do not com�municate via some elaborate protocol that involves queries and answers, acknowledgment of receipt of in�for�ma�tion, recovery from trans�mission failures, access regulation and the like.
3.2.2.2. The hybrid nature of Dual in�ter�ac�tions
Dual in�ter�ac�tions are hybrid just as Dual agents are. Hence, the whole archi�tec�ture is hybrid as every�thing ultimately boils down to Dual agents and their in�ter�ac�tions. Dual is hybrid at the microlevel and this hybridity propagates to the upper levels.
The declarative/procedural dualism is represented by the in�ter�ac�tions of type read and send respectively. A Dual agent can read the declarative aspect of another agent and/or send some�thing to its procedural aspect. More�over, the two types of in�ter�ac�tion are integrated: the black-and-white distinction be�tween read and send is made here chiefly for descriptive purposes. In practice, Dual agents interact through a judicious mix of both.
The symbolic/con�nec�tion�ist dualism of Dual agents is straight�for�wardly extended to their in�ter�ac�tions as shown in Table 3.2.
�Type read�Type send��Connectionist aspect�activation �level�spreading activation��Symbolic �aspect�symbolic structures�symbolic exchange��Table 3.2. Different aspects of Dual in�ter�ac�tions. (Com�pare with table 3.1.)
3.2.2.3. Exchange of symbols
In this section we will describe in more detail the most complex Dual in�ter�ac�tion — the symbolic in�ter�ac�tion of type send. Other types are easier to under�stand once this hardest type is mastered.
The elementary act of symbolic exchange is called a trans�action. It always involves two agents: a sender and a receiver. The sender takes the active role in the trans�action: it determines what to be sent to whom. It has an explicit reference to the receiver; it ‘knows’ its ‘name’. The re�ceiver simply re�ceives; it cannot trace who has sent the incoming symbol, nor can it refuse to accept it. (It can, how�ever, choose to discard a symbol immediately after receiving it.)
In other words, trans�actions between Dual agents are directional. The information flows from the sender to the receiver. To achieve a flow in the opposite direc�tion, a second transaction with switched roles is needed. In any given transaction, however, each agent participates either as a sender or as a receiver.
A Dual agent can participate in several trans�actions simul�taneously. For example, some agent can receive symbols from agents A, B, and C and send other symbols to agents A, D, and E. However, it controls only those trans�ac�tions in which it acts as a sender. In the example above, it can choose to send the symbol X to A and the symbol Y to D but it cannot even know who is the sender of the symbols it receives. 
The specification of the architecture imposes no upper limit on the number of simultaneous transactions for an indi�vidual Dual agent. How�ever, this number must never approach the total number of agents in the system. As a consequence, almost all informa�tion-processing activities in Dual are done locally. Complex tasks are carried out in small steps and ultimately reduce to simple operations performed by individual agents and simple trans�actions between pairs of agents. There is no central authority that can control the entire system. Instead, the macro�scopic behavior of Dual-based models emerges from a multitude of coordinated activities at the microlevel.
Transactions are elementary acts of exchange of symbols at a particular moment in time. They take very little time to complete. In contrast, inter�actions last much longer. Usually, the same two agents engage in successive transactions over and over again. In this case, we say that they engage in an interaction.
3.2.2.4. Exchange of ac�ti�va�tion
Dual agents also engage in con�nec�tion�ist in�ter�ac�tions of type send. That is, they exchange ac�ti�va�tion. This exchange is done continuously (and not in discrete steps). Therefore, we do not speak of trans�actions but only of inter�actions in the con�nec�tion�ist con�text. The principles outlined in the previous sub�section still apply. In particular, the exchange of ac�ti�va�tion is directional, there is a sender and a receiver, the sender takes the active role and so forth. A Dual agent can send ac�ti�va�tion to several other agents simultaneously. More�over, it can send dif�fer�ent amounts of ac�ti�va�tion to the dif�fer�ent receivers depending on the weight of the interaction.
To summarize, in�ter�ac�tions of type send are truly hybrid — they have two aspects and these aspects obey the same over�all organization. Each in�ter�ac�tion involves a sender and a receiver, and boils down to trans�mission of in�for�ma�tion from the former to the latter. Activation flows continuously, while symbols are sent in discrete trans�actions. One micro-agent can engage in multiple in�ter�ac�tions either as a sender or as a receiver.
3.2.2.5. The rest of in�ter�ac�tions
In�ter�ac�tions of type read are simple — a Dual agent can read the declarative part (both symbolic and con�nec�tion�ist) of another agent. The first agent actively reads, the second does not even notice that some�thing is happening. The only pre�requisite for an in�ter�ac�tion of this type is that the former has a reference to the latter.
Each Dual agent can potentially have a reference to any other agent in the archi�tec�ture. At any particular instant in time, how�ever, a Dual agent can have only a limited (and relatively small) number of such references.
Permanent and temporary in�ter�ac�tions: A large part of the in�ter�ac�tions in the archi�tec�ture are permanent. In other words, the same two Dual agents are involved in the same in�ter�ac�tion all the time. Permanent in�ter�ac�tions contribute to the stability of the archi�tec�ture — they bind micro-agents into co�ali�tions and formations that persist. On the other hand, there are also temporary in�ter�ac�tions. They con�tribute to the dynamics of the archi�tec�ture. New co�ali�tions emerge on the fly to meet some particular purpose. These new co�ali�tions are formed in large part by means of temporary in�ter�ac�tions. Thus, the organization of a Dual-based sys�tem is stable without being static.
3.2.2.6. Node-and-link terminology
Due to their importance, interactions are often reified and called links. That is, they are treated as entities that exist in their own right. This is an alternative terminology which is some�times more conve�nient than the inter�active one. In particular, we can speak of the attributes of a link, notably its weight and label. We can also discuss dif�fer�ent types of links, draw dia�grams using circles and lines, etc. For instance, the phrase ‘a population of inter�acting Dual agents’ translates into ‘a net�work of inter�connected nodes.’ Throughout this report, both phrases mean the same thing. We should always keep in mind, how�ever, that the node-and-link terminology is conventional�.
Links in Dual  are used to transmit activation and symbols. Links are directed — they have beginnings (senders) and ends (re�ceivers). Links also represent the ability of the first agent to read the declarative aspect of the second one. An arbit�rary number of links can come in and out any given node (Dual agent). Thus, agents are connected in networks like the one illustrated in Figure 3.2.2.2.



Figure 3.2.2.2. A simple network of interconnected Dual agents. Nodes (agents) are shown as circles, and links (inter�actions) are shown as lines. Arrows indicate the direc�tion of the links.
Links are hybrid — they have two aspects. The connectionist aspect of a link is called a weight; the symbolic aspect of a link is called a label. All links in Dual have both aspects at once. Each aspect, however, is visible only to the corresponding aspect of the Dual agents. The weight of a link is a real number and is used in the process of spreading activation. The label of a link is a symbol and is used by the symbolic aspects of the agents for various purposes. Labeled links play an important role in the symbolic re�pre�sentation scheme used in Dual.
3.2.3. Symbolic Representation Scheme
The question of knowledge representa�tion is central to the design of any cognitive system. In Dual, it is addressed in a hybrid way and at dif�fer�ent levels. This sub�section deals with the symbolic aspect of know�ledge repre�sen�ta�tion at the micro�level.
3.2.3.1. General framework
Dual agents represent things — objects, concepts, events, situa�tions, images, programs for action, etc. The archi�tec�ture provides for at least three types of descriptions: modal-specific, motor, and conceptual. Modal-specific descriptions are specific for some sensory modality: visual, auditory, tactile, etc. Motor descriptions contain programs that control the effectors and execute actions in the environ�ment. Conceptual descriptions deal with concepts, instances, rela�tions, events, etc. For the third type of descriptions, Dual employs a frame-like representation scheme. The other two types of descrip�tions are left unspecified for the time being. That is, we take into considera�tion the presence of such Dual agents in the architecture and we refer to them if necessary in our theoretical discussions. However, we shall not consider their internal structure. It may be frame-like as well or have some kind of analogical representation. In this report, we refer to conceptual descrip�tions unless explicitly stated otherwise.
A frame (Minsky, 1975) is a collection of declarative and procedural know�ledge describing a conceptual unit such as a concept, object, relation, action, event, situation, etc. If we concentrate on the declarative aspect of a frame, we can think of it as a complex node with many links that come in or out of it to connect it to other nodes. In fact, decla�rative know�ledge is repre�sented by these links, the node being merely a focus which can be referred to and where links cross. The links are implemented by slots and facets in the frame. In addition to these declarative structures, there may be pro�cedures attached to the frame (or some of its slots).
The notion of frames appears in Dual at two levels. Thus, we speak of micro�level and meso�level frames (or, for short, micro- and meso-frames). The former are nodes which can be referred to and where links cross; the latter are whole networks of tightly inter�connected nodes. The substrate of micro-frames in Dual are the micro-agents while  meso�-frames are imple�mented by coalitions (a.k.a. meso-agents). In this subsection, we will discuss micro�level frames, postponing treat�ment of the meso�level ones until section 3.3.3.
3.2.3.2. Frames, slots, and facets
Each Dual agent is a micro�level frame. More precisely, it is the symbolic, representational aspect of a Dual agent that is a micro�level frame (cf. Table 4.1). It has slots which in turn may have facets. This forms a hierarchical structure that can be parsed and manipulated by symbolic routines. Slots and facets are place�holders — they may be (and usually are) filled up with fillers. Many fillers are references to other micro-frames and thus link the given Dual agent to its peers. Figure 3.2.3.1. gives an example.
color-of:
	:type	:concept
	:subc	physical-relation
	:slot1
	  :type	 :aspect
	  :c-coref object
	:slot2
	  :type	 :aspect
	  :c-coref color
Figure 3.2.3.1. An example of a micro-frame. It represents a parti�cular concept — the relation color-of. The micro-frame has four slots. The first two of them describe the concept as a whole: it is an instance of the concept physical-relation. There are also other slots that describe the operands of the relation. Physical-relation, object, and color are references to separate micro-frames. Compare with figure 3.3.3.1.
There are two major kinds of slots: general slots and frame-specific slots (or G-slots  and S-slots for short). The former have pre�defined seman�tics that does not depend on the particular micro-frame owning the slot. There are dif�fer�ent kinds of general slots depending on their labels. The set of all possible slot labels is limited, specified in advance, and recog�nized by the symbolic machinery in Dual. It includes labels like type, subclass, and instance-of. The archi�tec�ture defines a set of slot labels that are used in all Dual-based models. This set is the basic vocabulary of know�ledge representation in Dual. Each particular model may add model-specific slot labels to this basic vocabulary. 
In contrast to general slots, frame-specific slots does not have inva�riant semantics. Thus, slot1 in frame1 may mean some�thing very dif�fer�ent from slot1 in frame2. Frame-specific slots also have labels but these are only void identifiers serving to distinguish one anony�mous slot from the other. They are not recognized by the symbolic machinery in the archi�tec�ture. By convention, frame-specific slots typi�cally are labeled slot1, slot2, slot3, and so on. Each Dual agent may have zero, one, or more such slots.
The specification of the archi�tec�ture in its present state makes no commit�ment on the maximum number of S-slots that may be possessed by a Dual agent. It is clear, however, that this number should be kept within reasonable limits (e.g. about seven). On the other hand, the number of G-slots is limited too as it cannot exceed the size of the vocabulary. As a con�sequence, the total number of slots (both general and frame-specific) that may be possessed by a Dual agent is limited.
Frame-specific slots (and only they) have facets. Facets can be conceived of as slots within slots. More precisely, they are like G-slots within S-slots. Facets have labels taken from the same vocabulary. That is, the same set of labels applies to both G-slots and facets. To illustrate, a micro-frame may have a G-slot labeled type and at the same time have a S-slot (labeled slot1) which has a facet labeled type.
3.2.3.3. Slot filler types 
There are stringent restrictions on the types of objects that can serve as slot- or facet fillers in Dual. This imposes discipline in the know�ledge representation scheme used in the archi�tec�ture.
Tags are simply identifiers such as :concept, :instance, and :situation. The vocabulary of possible tags is limited and is specified in advance on a per-slot basis. For instance, the filler of the :type slot of the Dual agent illustrated at figure 3.2.3.1 is a tag.
References provide a means of referring to other micro-frames and their slots. Each micro-agent in Dual has a name. Agent names are arbitrary symbols that serve to identify the agents. Agent names are unique — two differ�ent Dual agents cannot share the same name. Therefore, a name unam�bigu�ously identifies its owner and can serve as a reference to it. There are two types of references: to a micro-frame  or to some of its slots. The latter are ex�pressed by appending the label of the slot to the name of the micro-frame, e.g. color-of.slot1.
color-of-17:
	:inst-of	 color-of
	:slot1
	  :inst-of color-of.slot2
	:slot2
	  :inst-of color-of.slot1
Figure 3.2.3.2. Slot fillers that are references to other micro-frames or their slots.
Lists are heterogeneous ordered collections of elementary fillers. Using lists, a single slot may have multiple fillers. For instance, color-of may be a sub�class of both physical-relation and binary-relation. This is represented by a :subc slot whose filler is a list of two references.
3.2.3.4. Vocabulary of slot labels
Each micro-frame describes some entity — a concept, object, event, etc. General slots describe the entity as a whole while frame-specific slots describe its parts. Each G-slot contains a particular piece of know�ledge about the entity. G-slots with dif�fer�ent labels specify different aspects. Therefore, the set of possible slot labels define the vo�cabu�lary of know�ledge representa�tion in Dual. The labels from this vo�cabu�lary are recognized by the symbolic machinery in the archi�tec�ture. To illustrate, a symbolic rou�tine may examine the type slot of a given micro-frame and under�take dif�fer�ent actions depending on its filler.
Any slot whose label does not belong to the vocabulary is treated as a specific slot. Such slots correspond to parts� of the entity being de�scribed by the micro-agent. Each facet of the S-slot con�tains a particular piece of know�ledge about the part under con�sidera�tion. Facets with dif�fer�ent names specify dif�fer�ent aspects of that part. Facet labels are taken from the same vo�cabu�lary as G-slot labels.
The specification of Dual defines a basic vocabulary that is used by all models built on top of the archi�tec�ture. It contains, at the time being, the following slot/facet labels: type, subc, superc, inst-of, instance, c-coref, m-coref, a-link, t-link, and procedure. Each one of them defines a specific kind of G-slot or facet. Each kind of slot (resp. facet) serves a particular purpose in the micro-frame (S-slot) which is summarized in Table 3.3.
Slot name�Filler type�Purpose��type�tag�Specifies the type of a frame or slot.��subc�(list of) reference�Connects a subclass to a superclass.��superc�(list of) reference�Connects a superclass to a subclass.��inst-of�(list of) reference�Connects an instance to a class.��instance�(list of) reference�Connects a class to an instance.��c-coref�(list of) reference�Connects to some other conceptual description of the same entity.��m-coref�(list of) reference�Connects descriptions in diff. modalities.��a-link�(list of) reference�Arbitrary association.��t-link�(list of) reference�Temporary association.��procedure�(list of) reference�Attached procedure��Table 3.3 Basic vocabulary of slot and facet labels in Dual.
3.2.3.5. Interactions and links revisited
The table of slot kinds (Table 3.3) reveals that most of the slots and facets in the micro-frames are filled up by references. These references are very important. They are the fabric that combine micro�level frames into macro�level ones. More generally, they combine Dual  agents into coalitions and formations. 
Interactions in Dual, extensive and ubiquitous as they are, are very simple. An agent X reads from or sends some�thing to another agent Y. In both cases, X must have an explicit reference to Y. Very often, X contains this reference as a filler of one of its slots or facets. As slot fillers seldom change, X tends to engage in trans�actions with Y over and over again. In other words, there is a prolonged interaction between the two agents.
Using the node-and-link terminology, we say in such cases that there is a link between the two nodes. So, the phrase: “there is a link from agent X to agent Y” means that agent X has a slot (or facet) that is filled up by a reference to Y. The total number of slots in a given micro-agent is limited. Therefore, the number of links going out of the agent is limited too.
A micro-frame has a number of slots as the corresponding Dual agent interacts with many other agents. These inter�actions depend on the label of the slot (facet) that contains the reference to the receiver. For example, a-link slots do not induce any symbolic inter�actions. In the node-and-link terminology, we say that the link has a label. The label of the link is identical with the label of the slot or facet that contains the reference. In this way, we can speak of dif�fer�ent kinds of links rather than of dif�fer�ent kinds of inter�actions. We can also draw diagrams that conve�niently visualize the organization of micro-frames into meso-frames.
3.2.4. Connectionist Aspect of Dual agents
The symbolic representation scheme discussed so far has significant expressive power. It enables Dual models to represent concepts, objects, events, situations, plans, etc. These representations, how�ever, are relatively static. (More precisely, they are static if we neglect the creation of new nodes and links.) Thus, they fail to capture the dynamics that is characte�ristic of human cognition.
To overcome this limitation, Dual employs a dual representation scheme. Facts are represented symbolically, while their relevance to the particular context is represented by con�nec�tion�ist means. Each Dual agent (and hence each micro-frame) has an ac�ti�va�tion level attached to it. There is an automatic process of spreading ac�ti�va�tion that continuously restruc�tures the know�ledge base, making some nodes more accessible and others com�pletely inaccessible. Thus, know�ledge representa�tion and processing in the archi�tec�ture become dynamic and context-sensitive.
This subsection outlines the connectionist aspect of individual Dual agents. It will be described following the general PDP frame�work (Rumelhart et al., 1986).


Figure 3.2.4.1. Schematic outline of the con�nec�tion�ist aspect of a Dual agent (after Rumelhart et al., 1996). The input zone receives and accumulates the net input net(t), the ac�ti�va�tion func�tion F updates the ac�ti�va�tion level a(t), the out�put func�tion G trans�forms ac�ti�va�tion into out�put o(t), which is sent farther via weighted links.
3.2.4.1. Activation, input, and output
Each Dual agent is a node in a neural net�work. More precisely, it is the con�nec�tion�ist aspect of the agent that is such a node (cf. Table 3.1). It conti�nu�ously receives some activation from its neighbors, trans�forms this activation, and sends it farther. To do this, each Dual agent is equipped with the con�nec�tion�ist machinery described below.
Activation level. Each Dual agent i has an activation level ai(t) at any given moment. The activation level is a real number that varies and can take any value from the interval [0;M). In other words, ac�ti�va�tion in Dual is a non-negative continuous func�tion of time (which is continuous too). The agent is said to be inactive when its activation level is zero. Inactive agents are also said to be dormant (Hofstadter & Mitchell, 1991).
Input zone. Each Dual agent has an input zone which receives the in�coming ac�ti�va�tion. When receiving ac�ti�va�tion, the agent is in passive posi�tion — it cannot refuse to receive the ac�ti�va�tion nor can it trace its origin. The incoming ac�ti�va�tion is summed algebraically into the net input neti(t). This input embodies the con�nec�tion�ist influence of other micro-agents. It is a real number that can take any value. Some Dual-based models may employ agents with two separate input zones: excitatory and inhibitory. The former accumulates excitatory net input eneti(t); the latter — inhibitory net input ineti(t).
Activation function. The activation level changes continuously under the influence of the net input. The law that governs this change is speci�fied by the activation function.
Output function. While the ac�ti�va�tion func�tion regulates the internal state (ac�ti�va�tion) of the agent, its external out�put is regulated by the out�put func�tion Gi(ai(t)). From a con�nec�tion�ist perspective, the output fun�c�tion deter�mines the amount of ac�ti�va�tion that the Dual agent sends to its peers. The out�put func�tion trans�forms the ac�ti�va�tion level ai(t) into an out�put oi(t) = Gi(ai(t)).
Dif�fer�ent Dual agents within a single model may have dif�fer�ent ac�ti�va�tion and output func�tions. Usually, all agents of a given kind share the same func�tions, though the specifica�tion of the archi�tec�ture does not insist on that. The exact nature of the func�tions is part of the specifi�cation of the concrete Dual-based models.
3.2.4.2. Weighted links
The out�put of a micro-agent influences the input zones of the agents that are in�ter�ac�ting with it. The former acts as a sender in the inter�actions and the latter — as receivers. Using the node-and-link terminology, we can say that the node sends activation to its neighbors via links. When the in�ter�ac�tion be�tween two agents is such that the out�put oj of the sender j increases the net input neti of the receiver i, we say that there is an excitatory link from j to i. Conversely, when oj decreases neti, we speak of an inhibitory link. (When the receiver has two input zones, excitatory links increase eneti and inhibitory links increase ineti.)
 The out�put oj(t) of the sender is distributed unevenly among the re�ceivers. Each one of them gets a portion of the out�put proportional to the weight of the corresponding link. The weight wij is a real number in the interval [-1;+1] which indi�cates what portion of the total out�put of the sender j will be allocated to the particular receiver i. To illustrate, if wij = 2wkj then the receiver i will get two times more output from j than the receiver k. Negative values indicate inhibi�tion with the same magnitude. 
Weight normalization. The numbers attached to the links are raw weights. They are nor�ma�lized to produce the normalized weights that control the spread of ac�ti�va�tion. Normalization is a linear trans�formation of the weights so that the sum of the absolute values of nor�ma�lized weights equals one. Due to the nor�maliza�tion, there is implicit competition be�tween the nodes receiving ac�ti�va�tion from a given sender — the more they are, the less out�put is allotted to each of them.
Links and references. As it was stated in sub�section 3.2.3.5., the phrase “there is a link from agent X to agent Y” means that agent X has a slot (or facet) that is filled up by a reference to Y. In other words, links between Dual agents are actually references contained in their slots. Each reference is not only a symbol but also has a con�nec�tion�ist aspect, namely a number between -1 and +1 attached to it. This number is the raw weight of the link. Figure 3.4.2. illustrates:
electrical-appliance:
	:type	 :concept
	:subc	 (aftifact 1.0)
  :superc    ((plate 0.5) (fridge 0.4) (lamp 0.4))
	:a-link	 ((electricity 0.5) (instrument 0.2))
Figure 3.2.4.2. Example of references with dif�fer�ent (raw) weights. Compare with figure 3.2.4.3.
This Dual agent is connected to six other agents: aftifact, plate, fridge, lamp, electricity, and instrument. The link be�tween each pair of agents is actually a reference that fills some slot of electrical-appliance. The symbolic aspect of a link is its label. It is the same as the label of the cor�res�ponding slot. The connectionist aspect of a link is its weight. It is attached to each reference. The symbolic machinery ‘attends’ only to the labels of the links; the con�nec�tion�ist one — to the weights.


Figure 3.2.4.3. A Dual agent that interacts with six of its peers. Each in�ter�ac�tion (link) has a label and a weight. Compare with figure 3.2.4.2.
3.2.4.3. Availability, visibility, and speed
The con�nec�tion�ist aspect of Dual agents influences the symbolic one by determining the agent’s availability that will be discussed in this subsection.
The over�all behavior of a Dual-based sys�tem emerges out of the collective activities of a large number of individual Dual agents. Each one of them contributes to the gross product in dif�fer�ent degrees depending on their availability. The notion of availability contributes very much to the hybrid nature of Dual agents — is merges all four aspects sum�marized in Table 3.1. The con�nec�tion�ist aspect computes the availability, which is then used as power supply to the symbolic aspect. More�over, availability, like the agent itself, has declarative and procedural aspects. The former is called visibility, the latter — speed.
Visibility. A Dual sys�tem may consist of thousands of agents, each of which contains some particular small piece of know�ledge. At any given moment, how�ever, only a small fraction of this large know�ledge base is visible. The symbolic processes that take place in the archi�tec�ture can operate only on visible declarative elements. In addition, more active (and hence more visible) data elements are more attractive to the procedural machi�nery and thus are more likely to be taken into consideration.
The visibility of a Dual agent is measured by its ac�ti�va�tion level a(t). Therefore, visibility is a non-negative real number that changes over time. Agents with a(t)=0 are invisible to any symbolic processing that takes place at the moment. In order to be processed by the symbolic rou�tines, the agent must first be activated by the connectionist mechanism. When its ac�ti�va�tion level a(t) gets high enough to pass the threshold imposed by the ac�ti�va�tion function F, the agent will become visible (a(t)>0). For example, if the micro-frame that represents the concept color is inactive, it is not visible and hence will not be included in any symbolic struc�tures that are being built. An external observer can inter�pret that the sys�tem ignores colors because considers them irrelevant at the moment. If, how�ever, the micro agent color parti�cipates in a coali�tion with some other agents that are active, it may receive support from them and become visible. When this happens, it gets the chance to be heeded by the procedural machinery. More�over, this chance increases when the ac�ti�va�tion (and hence visibility) of the Dual agent increases. For instance, if a choice has to be made be�tween two micro-agents, the more visible one will be preferred.
Speed. The availability of a Dual agent determines not only the visibi�lity of its declarative aspect but also the speed of its procedural aspect. Very active agents work rapidly and thus determine sys�tem’s over�all line of computation, low-active ones work slowly, striving for more power, and in�active ones do not work at all. As the pattern of ac�ti�va�tion over the net�work of agents changes, the speed of individual processors changes ac�cordingly, making the computation performed by Dual-based models dyna�mic and context-dependent.
The exact mechanism for incorporating speed and visibility into the symbolic machinery in the archi�tec�ture is described later in this section. At the moment, we turn to the description of the symbolic processing per�formed by individual Dual agents.
3.2.5. Symbolic Processing
A great deal of the com�pu�ta�tion in the archi�tec�ture is symbolic process�ing — creation, inter�change, and modi�fica�tion of symbolic struc�tures. Although symbolic pro�cess�ing is in many respects similar to the con�nec�tion�ist pro�cess�ing performed by Dual agents, there are important dif�fer�ences. The similarities are that both symbolic and con�nec�tion�ist processing involve receipt of in�for�ma�tion in the input zone, trans�formation of this in�for�ma�tion, and finally its re�distri�bution. The dif�fer�ences are in the details but are never�the�less very important. First of all, symbolic pro�cess�ing is discrete while con�nec�tion�ist one is continuous. Second, symbolic pro�cess�ing is more complex and has greater diversity. This additional complexity is evident from Figure 3.2.5.1. which outlines the symbolic aspect of a Dual agent.



Figure 3.2.5.1. Schematic outline of the symbolic aspect of a Dual agent. The micro-frame contains declarative know�ledge. The input zone receives symbols from other Dual agents. They are processed by a symbolic pro�cessor and may be stored in the buffer and/or sent via labeled links that are described in the micro-frame. Compare with figure 3.2.4.1.
3.2.5.1. Local memory
Each Dual agent has local memory in which it stores symbolic in�for�ma�tion. Part of the local memory is permanent; the rest is volatile memory. When the agent loses its ac�ti�va�tion and goes to dormancy, permanent memory is retained and volatile memory is not. Thus, when the agent is reactivated later on, volatile memory is empty while the content of permanent memory is intact.
The permanent memory keeps the symbolic declarative aspect of the Dual agent. That is, it stores the micro-frame with its slots, facets, and fillers. Given the importance of the frame-like symbolic representation scheme, it turns out that most of the declarative know�ledge in the archi�tec�ture is stored in these memories. They are the substrate of the long-term memory of Dual-based sys�tems.
Most slot fillers in the micro-frame are references to other Dual agents. Therefore, in the node-and-link terminology it could be stated that the permanent memory keeps the links connecting the Dual agent to its peers. Links are stored together with their labels and (raw) weights.
Permanent memory is available for inspection from outside the micro-agent through in�ter�ac�tions of type read. This, how�ever, is possible only when the agent is visible. Visibility is computed by the con�nec�tion�ist aspect and depends on the ac�ti�va�tion level of the agent.
In contrast to the permanent memory, volatile memory is wiped out when the agent’s ac�ti�va�tion level drops below a certain threshold. Part of the volatile memory is the input zone. It is used in in�ter�ac�tions with other Dual agents and more specifically in in�ter�ac�tions of type send. The input zone is the place where other agents can put symbols and symbolic struc�tures. These symbols are then processed by the local symbolic processor.
The rest of the volatile memory — the buffer — is for agent’s private use. It is inaccessible from outside the micro-agent. The symbolic processor uses it to store inter�mediate results of its symbolic op�era�tion and to keep track of the markers that have passed through the micro-agent. The buffer may also contain temporary links to other Dual agents (namely t-link slots filled with references). These links are not used by the symbolic machinery of the agent; they participate only in the process of spreading ac�ti�va�tion.
It is important to stress that the size of the whole local memory is limited. That is, the total number of symbols that can be stored in it is limited.  The declarative memory holds only the micro-frame and thus does not exceed the maximum size of Dual micro-frames (see sub�section 3.2.3.2.). The input zone and the buffer are also postulated to be limited. The specifica�tion of the archi�tec�ture in its present state makes no commit�ment about the actual limits nor specifies what happens when the limit is exceeded. The latter situation, how�ever, should hardly ever occur in well-tuned Dual models.
To sum up, the permanent memory holds the micro-frame of the agent and is available from outside through in�ter�ac�tions of type read, the input zone supports in�ter�ac�tions of type send, and the buffer is for private use. The latter two kinds of memory are volatile — they are wiped out when the agent’s ac�ti�va�tion falls below a threshold. All afore�mentioned types of memory comprise the local memory of the Dual agent. The local memory of each agent is limited in size. The symbolic processor can access all kinds of memories.
3.2.5.2. Operations, steps, and processes
A great deal of the in�for�ma�tion processing in the archi�tec�ture is symbol manipula�tion — deterministic construction, trans�formation, storage, and inter�change of symbolic structures. We use the general term symbolic processing to refer to these activities. They are distributed over the population of Dual agents and are carried out by their symbolic pro�cessors.
Symbolic processing is discrete and can be categorized into the following seg�ments of increasing complexity:
Symbolic operation. This is the smallest act of symbol manipulation in the archi�tec�ture. Symbolic op�era�tions are simple, atomic, and deterministic. They may be conceived as elementary instructions of the symbolic pro�cessor of the corresponding Dual agent. To illustrate, the act of decom�posing the compound reference frame235.slot2 is a symbolic opera�tion. Another operation would be to check whether two symbols are identical, to retrieve the filler of a slot, etc.
Symbolic op�era�tions constitute the finest grain of symbolic processing. Bigger pro�cesses consist of sequences of op�era�tions. The repertoire of possible op�era�tions determines the over�all reach of the symbolic processing in the archi�tec�ture. A long-term goal of Dual research is to identify a basic set of symbolic op�era�tions that are convenient to support the behavior simulated by Dual models. An additional, even more distant goal will be to implement the basic symbolic op�era�tions with sub�symbolic means. At present, how�ever, we do not try to explicate the exact set of op�era�tions or their sub�symbolic imple�mentation. Instead, we take them for granted and use them as building blocks.
The work of a symbolic processor is conveniently visualized in time dia�grams like those in Figure 3.2.5.2. In such dia�grams, there is a line that represents the passage of time. Thin seg�ments on this line indicate idle periods, that is, time intervals in which the pro�cessor does not execute any op�era�tion. Thick seg�ments on the time line indicate busy periods. The dots within thick seg�ments mark transitions be�tween individual symbolic op�era�tions. Arrows indicate ex�change of symbols with other Dual agents. Reading and writing in the local memory is not shown.


Figure 3.2.5.2. Time diagram illustrating a typical case of symbol manipulation. The symbolic processor is idle until a symbol arrives into the input zone. This triggers a sequence of three symbolic operations that result in the production and emission of another symbol.
Symbolic step. Symbolic op�era�tions lump together into symbolic steps. These are sequences of op�era�tions per�formed by a single Dual agent without inter�vening symbolic inter�actions with other Dual agents. (Charles Hoare (1985) uses the term disjoint pro�cess�.) Symbolic steps are the smallest units with respect to the inter�actions be�tween dif�fer�ent Dual agents working in parallel. A symbolic step may begin, for example, with re�ceipt of a symbol from out�side the micro-agent and end with emission of another symbol. The important thing is that by definition there is no inter�change during the symbolic step. Therefore, an external observer can assume that symbolic steps are atomic and ignore the elementary op�era�tions that consti�tute them. In time diagrams, symbolic steps are shown as thick (busy) segments that can have arrows only at their endings:

or simply:

Figure 3.2.5.3. Alternative time diagrams of two consecutive symbolic steps. In the second diagram the dots deli�neating individual operations are omitted for simplicity.
Rigid symbolic process. This is a fixed and a priory specified sequence of symbolic steps. The specification of a rigid pro�cess is called a symbolic routine. Rigid pro�cesses are usually executed by a single Dual agent but may also be distributed across a (tight) coalition of agents. The important thing that makes the pro�cess rigid is the existence of an explicit routine that specifies what operations are executed, upon what conditions, when, and by which micro-agent(s). This makes the rigid process predictable and reliable. It could also be tuned for efficiency. Therefore, rigid processes are im�por�tant ingredients of the over�all in�for�ma�tion pro�cess�ing in Dual. Im�port�ant ingredients, but not the whole story: rigid pro�cess�ing alone cannot satisfy the demands on plausible cog�ni�tive behavior in a dynamic en�vi�ron�ment (Kokinov et al., 1996).
In time diagrams, when several processors work in parallel, there are several parallel lines in the diagram. In�ter�ac�tions are shown as arrows connecting two lines.
a)
b)



Figure 3.2.5.4. Rigid symbolic processes performed by one Dual agent (a) or by a coalition of three agents (b).
Emergent symbolic process. This is the most complex type of symbolic pro�cess�ing in the archi�tec�ture. The emergent symbolic process does not (and cannot) have any complete a priory specifica�tion. It is distributed over a number of inter�acting Dual agents and the exact course of the compu�ta�tion is determined dynamically by the inter�play of various factors (or pressures (Hofstadter, 1984)).  Since these factors  are numerous and their influ�ence is intricate, their net result cannot be described or anti�ci�pated a priory. Thus, although the whole processing in Dual is determinis�tic, the exact course of an emergent process is unpredictable. The boundary be�tween rigid and emergent pro�cess�ing is fuzzy. For instance, it is difficult to tell them apart on the basis of time diagrams. As a general rule, how�ever, the more a pro�cess is specified before�hand, the more rigid it is and vice versa.
Emergent symbolic processes by their very nature belong to the level of co�ali�tions (the meso-level). There�fore, we postpone their discussion until sec�tion 3.3.4 and con�centrate on rigid processing below.
3.2.5.3. Speed of symbolic processing
Activation controls the rate of in�for�ma�tion pro�cess�ing. It is the ‘energy’ that runs the ‘cog�ni�tive machinery’.
(Anderson 1983, p.86)
Dual symbolic processors run at dif�fer�ent speeds depending on the ac�ti�va�tion level of the Dual agent. Very active agents run rapidly and thus determine system’s overall flow of computation, low-active agents run slowly, and inactive agents do not run at all. As the ac�ti�va�tion level of each Dual agent changes, the speed of its symbolic processor changes accordingly. This is a key factor to the computational dynamics that is a characteristic feature of Dual (Kokinov et al., 1996).
The exact mechanism that governs processing speed as a func�tion of the ac�ti�va�tion level is based on the following energetic analogy. Each symbolic op�era�tion requires that the symbolic processor does a certain amount of work to carry it out. Doing work requires energy which is supplied to the symbolic processor by the con�nec�tion�ist aspect of the agent. The speed of the computation depends on the power, i.e. on the rate of energy supply and consumption. The same amount of work may be done rapidly if there is enough power, slowly if power is scarce, or not at all if power is lacking completely.
Most of these concepts have a counter�part in Dual as the following table demonstrates:
energy domain	Dual domain
work	symbolic operation
amount of work  A	consumption C of an op�era�tion
consumer	symbolic processor
generator (power supply)	connectionist aspect of the agent
power  P(t)	activation  a(t)
energy  E= ( P(t)dt	accumulated activation ( a(t)dt
efficiency coefficient (	efficiency coefficient (
The con�nec�tion�ist aspect of a Dual agent serves as a power supply to the symbolic processor. The amount of energy produced by the con�nec�tion�ist aspect is given by the integral � EMBED Equation.2  ��� , where a(() is the ac�ti�va�tion level of the agent, t0 is some fixed initial moment and t>t0. This integral defines the energy function E(t). When a(() is positive in the interval (t0,t), E(t) is an increasing func�tion of t and thus has an inverse: E-1. The inverse func�tion expresses the time needed for production of a given amount of energy: t-t0 = E-1(E).
The symbolic processor consumes energy in order to perform symbolic op�era�tions. In other words, the symbolic processor can be regarded as a machine that transforms con�nec�tion�ist energy into symbolic work. Not all energy, how�ever, is converted into useful work. There are some losses that cover the internal needs of the processor itself. The efficiency coefficient ( is defined as the ratio of the useful work to the total energy input: (=A/E . The efficiency coefficient ranges from 0 to 1 and is a characteristic of the symbolic processor. The processors of dif�fer�ent Dual agents have dif�fer�ent efficiencies. Those processors that perform highly automated tasks have ( close to 1. In contrast, processors that perform novel tasks have low efficiency.
With these definitions at hand, we are able to calculate the time needed to perform a symbolic op�era�tion. Each symbolic op�era�tion has a parameter associated with it — its consumption C. This specifies how much con�nec�tion�ist energy is equivalent to the amount of symbolic work embedded in the op�era�tion. Each Dual model specifies the consumption of each kind of symbolic op�era�tions. These are parameters of the model. Another set of parameters specifies the efficiency coefficient of each (type of) symbolic processor. (The latter set of parameters can be adjusted through some sort of learning — the basic rule is that efficiency increases with practice.)
Now, in order to perform an operation with consumption C, a symbolic processor with efficiency coefficient ( needs a total input of E=C/( units of con�nec�tion�ist energy. This energy must be produced by the connectionist aspect. This, how�ever, takes time because the power of the latter is limited. The ac�ti�va�tion a(() of the con�nec�tion�ist aspect is integrated over time: E(t)= � EMBED Equation.2  ���. When enough energy is produced by the con�nec�tion�ist  aspect and then trans�formed into symbolic work, the symbolic op�era�tion is completed. This happens at time t = t0 + E-1(C/().
Can the energetic analogy be legitimately applied to the cognitive archi�tec�ture Dual? Yes, if one takes into account two more points:
	The specification of Dual postulates that if the activation level of an agent drops below a threshold, its symbolic processing is terminated and all intermediate results stored in its buffer are lost. In the context of the present discussion, if a(() becomes zero even for a moment, the whole op�era�tion is aborted. When a(() stays above zero (i.e. above the threshold), the integral E(t) is monotonically increasing and the inverse func�tion E-1 is well defined.
	The symbolic op�era�tions in Dual are atomic. Therefore, the exact process that takes place during the execution of an op�era�tion is irrelevant. What matters is only the final outcome and the timing of its appearance.
Note also that when the symbolic processor is idle, the energy pro�duced by the connectionist aspect goes unused and cannot be accumulated.
The quantitative law defined in this sub�section meets the qualitative specifications of Dual set forth by previous publications on the archi�tec�ture (Kokinov 1994a, 1994b). Indeed, when a Dual agent is very active, there is plenty of power for the symbolic processor. Hence, many symbolic op�era�tions may be executed within small periods of time (see Figure 3.2.5.5.a). In other words, active processors run rapidly. On the other hand, when the ac�ti�va�tion level is low, power is scarce and large time intervals are needed for the symbolic processor to complete the same sequence of op�era�tions (Figure 3.2.5.5.b). Finally, inactive processors do not run at all.

a)					b)
Figure 3.2.5.5. Illustration of the mechanism for determining processing speed on the basis of ac�ti�va�tion level a(t). Time t varies along the X axis, ac�ti�va�tion a(t) — along the Y axis. Hatched areas represent energy or work. It is evident from the two diagrams that the same amount of work takes little time when a(t) is high (a) and much time when a(t) is low (b).
3.2.5.4. Asynchronous discrete op�era�tion
It is now possible to specify the op�era�tion of the symbolic procedural aspect of Dual agents. Each symbolic pro�cessor has a hard-wired routine that controls its op�era�tion. The routine specifies what symbolic op�era�tions are performed, upon what conditions, and in what order. It may contain branching (e.g. if statements) and loops. From an external point of view, how�ever, the routine unfolds into a linear sequence of symbolic op�era�tions. The consumption C of each op�era�tion is known — it depends on the type of the op�era�tion and on the visibility of its arguments. Moreover, C is determined at the start of the op�era�tion. On the other hand, the efficiency coefficient ( of the symbolic processor is known too. Thus, the amount of con�nec�tion�ist energy E (=C/() that is needed for successful completion of each op�era�tion is known prior to its execution.
The symbolic processing performed by each Dual agent proceeds in a discrete way — op�era�tion by op�era�tion. The specification of the archi�tec�ture postulates that the op�era�tions are atomic. That is, the exact process that takes place within the symbolic processor is irrelevant. What is relevant is the input/output relation of the op�era�tion and its overall duration. The latter is computed by the formula t - t0 = E-1(C/(). The outcome of the op�era�tion takes effect exactly at the moment when enough ac�ti�va�tion is accumulated: � EMBED Equation.2  ���=C/(.
These considerations are easily extended from individual op�era�tions to bigger sequences — steps and rigid symbolic processors. In fact, symbolic steps are at a more convenient level of granularity: they are bigger than op�era�tions and at the same time they may still be considered atomic. They are atomic in the important sense that, by definition, there are no interactions with other Dual agents during the step. From that follows that the total consumption of the symbolic step can be determined prior to its execution — it simply is the total consumption of all comprising op�era�tions. (The visibility of the op�era�nds cannot change during the step because there are no in�ter�ac�tions with other agents.)
Thus, as far as processing speed is concerned, there is no difference be�tween op�era�tions and steps. Both are atomic and their consumption is known prior to their execution. Steps, however, have the advantage of being bigger chunks. Therefore, at this stage of our research, we concentrate on symbolic steps and postpone detailed consideration of the exact op�era�tions that carry them out. For instance, we say that the act of receiving a marker, storing it into the buffer, and sending a copy of it to another agent is one single symbolic step with consumption C. We do not consider the exact op�era�tions that carry it  out, as long as the right marker appears at the right moment in the right place.
Symbolic steps are important as a unit of analysis because they shift the discussion from individual Dual agents to coalitions of in�ter�ac�ting Dual agents. The very definition of the term ‘symbolic step’ refers to interactions with other agents. Each one of them works at its individual speed without synchronization with others. In other words, the agents run asynchronously and discretely.
The beginning and end of each step can happen at arbitrary instants in time. Each agent must be prepared to receive a symbol at any moment and cannot predict the exact occurrence of such symbols. Conversely, each agent is free to send a symbol to another agent without having to check whether the receiver is busy or not. (The sender does have to check whether the receiver is visible.) This considerably simplifies in�ter�ac�tions in Dual.
As the pattern of in�ter�ac�tions is complex and each processor runs at individual variable speed, the overall process soon becomes unpredictable. This is true regardless of the strictly deterministic nature of Dual agents and the archi�tec�ture as a whole. This is a general fact: asynchronous parallelism is inseparable from processors’ actions being random relative to one another (as pointed out by Hofstadter & Mitchell (1991), who in turn refer to Hewitt (1985)). This asynchronous parallelism is a crucial factor for the dynamic emergent computation in Dual (Kokinov et al., 1996).
One of the consequences of this implicit randomness is that exact coincidences in the archi�tec�ture are exceedingly rare. More precisely, the probability of such coincidence is infinitesimally small (because the underlying variables are continuous). In other words, two events virtually never happen at exactly the same moment. Similarly, two Dual agents virtually never have exactly the same ac�ti�va�tion levels. This relieves Dual’s specification of the burden of handling cases such as: “What happens when two markers come simultaneously; which one is processed first?”  The specification of the archi�tec�ture postulates that in�for�ma�tion is processed on a first-in first-out basis. Ties are (almost) impossible in theory, very rare in practice, and may be resolved arbitrarily.
3.2.5.5. Data visibility
Agent availability has two aspects — procedural speed and declarative visibility. Both depend on the ac�ti�va�tion level of the agent (sub�section 3.2.4.3.).
When the ac�ti�va�tion level is below the threshold, the agent is invisible to the symbolic machinery in the archi�tec�ture. It is impossible to distinguish by symbolic means whether a Dual agent is invisible or does not exist at all. In particular, if some (active) agent tries to establish a transaction with an invisible agent, it will fail. In order for the transaction to be established, the second agent must first be activated.
The following scenario takes place in many cases: There is a highly active Dual agent that tries to perform some action. The agent participates in a coalition of inter�connected agents. Since the agent is active, its partners receive ac�ti�va�tion and become visible. This enables the symbolic processor of the first agent to gain access to the declarative knowledge stored in other agents of its coalition. The procedure activates its data. An alternative scenario is possible too — data activating their procedure (which leads to a data-driven mode of computation).
Data visibility, however, is not an all-or-nothing phenomenon. Once a Dual agent passes the threshold (i.e. becomes visible), it may be visible to dif�fer�ent degrees. Visibility is directly proportional to the ac�ti�va�tion level a(t). Highly active agents not only are visible to other agents, they also tend to attract their ‘attention’. For example, if a choice has to be made be�tween two competing micro-agents, the more visible one will be preferred.
In addition, active data may speed up op�era�tions that work on them. To that end, the consumption C of the op�era�tion should depend not only on the kind of the op�era�tion itself, but also on the visibility of the operands. The specification of the archi�tec�ture makes no commitment about the exact dependence — it is left to Dual-based models.. This topic needs further experimentation. Two possible formulas are: C = C0/V and C = C0-k*V, where C is the consumption of the operation, C0 is some predefined baseline consumption, V is the visibility of the operand, and k is a predefined coefficient. [See p.96 in (Anderson, 1983).] Both formulas ensure that more visible operands are processed faster.
3.2.6. Temporary Dual Agents and Links
Most cog�ni�tive tasks require temporary structures in memory — rep�re�sen�tations of the environment, intermediate results, hypotheses about future events, etc. Consequently, any cognitive archi�tec�ture must provide a medium for building and maintaining temporary structures. In Dual, this service is carried out by temporary Dual agents. They are akin to permanent Dual agents in all aspects but one: temporary agents disappear when their ac�ti�va�tion level falls below certain lethal threshold. (In contrast, permanent agents do not disappear; they simply become inactive and may be recuperated later.)
Likewise, there are temporary links or, more precisely, slots or facets labeled t-link (see sub�section 3.2.3.4). They are similar to permanent associative links (a-links) except that t-links are held in the volatile memory and hence cannot survive dormant periods. Both kinds of links are ignored by the symbolic aspect of the archi�tec�ture and are used for con�nec�tion�ist purposes only.
A permanent Dual agent (P) can interact with a temporary one (T) only via a temporary link. Other agent combinations (P-P, T-P, and T-T) can employ any kind of link.
3.2.6.1. Construction of temporary agents and links
Temporary agents are created by specialized Dual agents called node constructors. They are equipped with built-in routines for constructing a brand new temporary Dual agent upon request. Each Dual-based sys�tem has a limited number of such node constructors and other agents compete for them. In other words, node constructors are a centralized scarce resource. They are the only institution in the archi�tec�ture that can create new Dual agents. Each new agent is given unique name that will serve as a reference to it�.
Node constructors are recruited by other Dual agents for the needs of some com�pu�ta�tion. While a node constructor is working on some task, it is unavailable for other requests. Thus, it is possible that all node constructors in the sys�tem are busy. On such occasions, symbolic processes that need node construction are momentarily (or sometimes permanently) suspended. When a node constructor has completed its job, it is released and becomes available again.
Temporary links are constructed by the general mechanism for creating new slots. Namely, each Dual agent is able to add a slot (or facet) to its local micro-frame. The only dif�fer�ence with t-link slots is that they are stored in the buffer. In both cases it is the local symbolic processor that creates the slot by executing an appropriate sequence of symbolic op�era�tions. Non-local slots are harder to establish: if an agent wants to create such slot, it must send a request to the prospective owner of the slot.
3.2.6.2. Destruction of temporary agents and links
The ‘life span’ of tem�por�ary agents and links depends on the con�nec�tion�ist mechanism. Temporary struc�tures live as long as the ac�ti�va�tion level of the agent is maintained high enough.
Whenever the ac�ti�va�tion level of a temporary agent falls below the lethal threshold, the agent disappears from the sys�tem together with all its slots, the contents of its buffer, etc. All references to the agent become invalid. When the con�nec�tion�ist aspect of some other agent tries to follow a ‘dead’ reference, the absence of the referent causes that reference to be removed. In this way, all references to the temporary agent are removed shortly after its elimination.
Temporary links are stored in volatile memory and are, therefore, purged when the host becomes inactive (see sub�section 3.2.5.1).
The hopeless fate of temporary agents and links might be remedied in future versions of the archi�tec�ture. The projected learning mechanisms in Dual foresee promotion of tem�por�ary struc�tures to permanent status. The intuition behind the archi�tec�ture says that most of the permanent agents and links have emerged as temporary struc�tures that have later stabilized. For example, one particular life history might be:
 t-link  —————————>  a-link  —————————>  m-coref�stabilization            interpretation 
3.2.7. Relation to other theories
Neither ever quite the same, nor ever quite another.
Gerard de Nerval
Dual agents share many features with other theoretical constructs used in cognitive modeling. They have obvious relationship with production rules, con�nec�tion�ist units, frames, etc. At the same time, however, Dual agents differ from any of them. This subsection tries to contrast our proposal with some of the alternatives.
�Representation�Processing��Connectionist aspect�activation �level�spreading activation��Symbolic �aspect�symbolic structures�symbol manipulation��Table 3.4. Different aspects of Dual agents. (Replica�tion of table 3.1.)
The most important thing about Dual agents is their hybrid nature. They put together properties that are usually held in isolation (Table 3.4). Thus, the typical relation be�tween Dual agents and other constructs is inclusion. Dual agents have the essential characteristics of production rules plus some�thing more. They have the essential characteristics of con�nec�tion�ist units plus some�thing more, etc. In addition to this general inclusive relationship, however, there are some details in each particular case that merit mentioning in brief.
Semantic network nodes: Dual agents are very similar to semantic net�work nodes (Quillian, 1969; Anderson & Bower, 1979). They are labeled  representations of concepts, objects, relations, events, and so forth. In addition, they are connected by labeled links and these links are essential to the representational scheme. Finally, Dual agents pass markers. On the other hand, Dual agents have many features — notably their con�nec�tion�ist and procedural aspects — that are alien to semantic net�work nodes.
Connectionist units: Dual agents are also very similar to the units (or neurons) used in con�nec�tion�ist models and in particular localist neural networks (Feldman & Ballard, 1982; Rumelhart & McClelland, 1986). They perform numerical com�pu�ta�tions and spread activation along weighted links. Moreover, their ac�ti�va�tion level is interpreted — in Dual it represents context relevance. On the other hand, the same ac�ti�va�tion is used in a non-canonical fashion in the archi�tec�ture: as power supply for symbolic processing. Dual agents depart radically from the con�nec�tion�ist movement because they deal explicitly with symbols. Distributed representations and the emphasis on learning, which are characteristic of many neural net�works, are not central to Dual research, at least for the time being.
Production rules: Turning to the procedural aspect, Dual agents have much in common with rules (or productions) used in production sys�tems (Newell & Simon, 1972; Anderson, 1983, 1993). They perform small symbolic actions when certain conditions hold. Thus, they embody efficient, rigid procedural knowledge. In most production sys�tems, however, the rules are separated from declarative data — the latter are posted to a black�board where production rules add or remove clauses. In Dual, the symbolic processor of each micro-agent has private memory (input zone, buffer, and a micro-frame). Dual agents send messages directly to their peers via references. They run at variable speed depending on their ac�ti�va�tion level. Finally and most importantly, there is no global executive in the archi�tec�ture deciding which agent to run, resolving conflicts, etc. Instead, collective behavior is based on dynamic emergent computation.
Summarizing the comparisons so far, Dual agents integrate features of semantic net�work nodes, con�nec�tion�ist units, and production rules. All these features are present in each Dual agent at once. It should be noted, how�ever, that in dif�fer�ent agents these features are represented to a dif�fer�ent degree. More concretely, some micro-agents in the archi�tec�ture serve mostly as nodes — their raison d’etre is to staticly, declaratively represent some�thing. Nonetheless, such agents take their part in the processes of spreading ac�ti�va�tion and marker passing. In contrast, other agents serve mostly as rules: these are the agents of type: procedure. Still others serve mostly as distributors of ac�ti�va�tion. Despite these variations in the emphasis, how�ever, all aspects from Table 3.4. can be found in any Dual agent.
Frames: The in�tegration of declarative and procedural knowledge makes Dual agents similar to frames (Minsky, 1975), schemas (Rumelhart, 1975), and scripts (Shank & Abelson, 1977). Dual agents, however, are much smaller than these complex struc�tures. A full-blown script, for example, contains a wealth of in�for�ma�tion about the participants, event sequence, preconditions, place of occurrence, and so on. This amount of in�for�ma�tion is far beyond the reach of a single Dual agent. It would be represented by a whole coalition of micro-agents. Dual co�ali�tions, being distributed and having strong con�nec�tion�ist flavor, are closest to schemata (Rumelhart et al., 1986). To sum up, it is better to say that individual Dual agents are micro-frames (section 3.2.3.1) while coalitions are meso-frames.
Codelets: An interesting theoretical construct is proposed by Douglas Hofstadter (1984, 1995) and elaborated by his graduate students Melanie Mitchell (1993) and Robert French (1995). Their codelets are ‘small pieces of code’ waiting in a coderack for the chance to run. Each codelet has a numeric attribute called urgency influencing the likelihood that it will be chosen. Thus, codelets fire with probability proportional to their urgencies while Dual agents run at speed proportional to their ac�ti�va�tion levels. Both mechanisms implement the same general idea — dynamic emergent com�pu�ta�tion (parallel terraced scan in Hofstadter’s terms).
Having listed some theoretical constructs that are similar to Dual agents, let us now turn to two other constructs which are not similar, despite the appearance:
Turing machine: Dual agents have symbolic processors and local memories, but do not have the full power of Turing machines because their memories are limited (sub�section 3.2.5.1). Moreover, the symbolic aspect of a Dual agent is not closed in itself — a symbolic op�era�tion can be aborted unexpectedly if the ac�ti�va�tion level drops below the threshold.
Autonomous agents: The term agent is used heavily in the areas of multi-agent sys�tems and social cognition (Castelfranchi & Werner, 1994; Gilbert & Doran, 1994). In such contexts, however, the term usually refers to entities that are much more complex and autonomous than Dual agents. The agents in a multi-agent system can, for instance, pursue explicit goals, maintain a model of the environment, negotiate with their peers via an elaborate protocol, etc. This sophisticated behavior can be achieved only by a whole system of Dual agents. Individual micro-agents are nothing more than cells in a bigger organism  (section 3.1).
3.3. Dual at the Mesolevel
This sub�section describes Dual at the meso�level. At this inter�mediate level of granularity, the entity of main interest is the coalition — a ‘team’ of collaborating Dual agents.
3.3.1. The Need for Coalitions
Dual agents are simple, they cannot do much in isolation. Therefore, they depend on one another and form coalitions. A coalition is a set of agents and a pattern of interactions among them. The members of a coalition exchange activation and symbolic information.
Coalitions have three very important properties: they are decentralized, emergent, and dynamic. None of these properties is present at the level of individual Dual agents (the micro-level). It is at the level of coalitions where these properties appear in the archi�tec�ture for the first time. Having appeared at the meso-level, these properties propagate to upper levels and become characteristic of the Dual approach to cognitive modeling as a whole.
Coalitions play a key role in Dual-based models. They are at the right level of abstraction for many purposes. Individual agents are so small that become meaningful only within the context of a bigger structure. On the other hand, the complexity of formations and systems (see section 3.4) make them difficult to understand and to manage. It is, therefore, necessary to have a conceptual apparatus that is at intermediate level of granularity — the meso-level (see sub�section 3.1.3).
 The introduction of the meso-level and the notion of coalitions is judged to be one of the important contributions of the present thesis.
3.3.2. Types of Coalitions
The coalition is a set of agents and a pattern of interaction among them. There are permanent coalitions in which the pattern of interaction is stable and changes little over time. At the opposite end of the spectrum, there are ephemeral co�ali�tions, often involving temporary agents, which fall apart after a while. Finally, there is a whole range between these two extremes.
It is important to note that co�ali�tions do not have clear-cut boundaries. An agent can be involved in many of them at once, and to a different extent. Coalitions can ‘recruit’ new members, either permanently or temporarily. They may share members and thus ‘flow’ gradually from one into another.
There are also ‘tight’ coalitions and ‘loose’ coalitions depending on the intensity of the interactions among their members. Tight co�ali�tions are characterized by heavily weighted links and by intensive exchange of symbolic structures within the co�ali�tion. By contrast, loose co�ali�tions are characterized by relatively weak links, often temporary ones, and by little or no symbolic inter�change. Again, there is a whole range between these two extremes.
To follow the metaphor proposed by Douglas Hofstadter (1995), the agents in a coalition are like molecules in a fluid. Tight co�ali�tions are like fluids with high viscosity — their molecules are much constrained by the presence of other molecules in vicinity. For instance, if one agent from a tight co�ali�tion is highly active then it is almost certain that all other members are active too. Such coalition acts as a unit, it is like a drop of honey that keeps its spherical shape regardless of the force of gravity. By contrast, loose coalitions have low viscosity — their members are little influenced by their peers and are thus free to move around and even to ‘evaporate’, to abandon the co�ali�tion.
It is important to stress that all coalitions in Dual are in fluid phase. None of them are gaseous — an isolated Dual agent will quickly lose all its activation (due to spontaneous decay) and will drop out of the working memory. None of them are solid — it is always possible that, e.g., a new agent is included into a coalition; it is never forbidden a priory to have a blend between any two coalitions, etc.
3.3.3. Coalitions as Representations
Recall that Dual agents can be seen as repre�sen�ta�tional units — each of them stands for some single entity. By extension, coalitions of agents represent composite entities like propositions and situations. In the knowledge representation scheme adopted in Dual even a simple proposition is repre�sen�ted by a number of agents. In such cases we say that there is a meso-frame that consists of several micro-frames (cf. sub�section 3.2.3.1).
From the symbolic perspective, a Dual meso-frame is a co�ali�tion of agents (micro-frames) tightly coupled with one another by many labeled links. The links of type :subc, :superc, :inst-of, and :c-coref are especially important. In particular, slot fillers are conceptual coreferences (:c-coref’s) to other frames or their slots.
 To take a relatively simple example, consider Figure 3.3.3.1. It depicts the core of the coalition representing the fact that some teapot (dubbed teapot-1) is colored in some specific shade of green. As is evident from the figure, the exact boundaries of this co�ali�tion cannot be determined — it is meshed with other co�ali�tions representing that teapot-4 is a teapot, that teapots are liquid holders (in addition to being artefacts), etc. In fact, Figure 3.3.3.1. shows many co�ali�tions simultaneously (or rather only one bigger and looser co�ali�tion). The figure is ‘centered’ around the proposition color-of-1 (teapot-1, green-1), that’s all. Similar figures can be drawn around teapot-1, for example, showing that it is green, made of metal, has a handle, etc.




Figure 3.3.3.1. Example of a meso-frame depicted in the node-and-link notation. For simplicity, only part of the links are shown and all the connectionist aspect is omitted. The micro-frame color-of-1 has two S-slots filled by (references to) teapot-1 and green-1. It also has an :inst-of slot pointing to the conceptual agent color-of, etc. Compare with figure 4.2.3.
There is also a con�nec�tion�ist aspect of the meso-frame (not shown in the figure). Each link is weighted and ac�ti�va�tion spreads between the nodes via the links. For example, if the agent color-of-1 receives ac�ti�va�tion from some�where, it will pass it to its coalitions partners who in turn will pass it to their partners and so on. Thus, if one member of a co�ali�tion is active, the other members tend to be active too. In tight co�ali�tions this leads to synchronized availability of the agents involved.
It is possible to add new in�for�ma�tion to a meso-frame. For instance, some sort of perceptual mechanism� could construct a new micro-frame representing, e.g. that teapot-1 is on table-2. This new agent will then join the co�ali�tion and thus will be involved immediately into the con�nec�tion�ist and symbolic activities that take place at the time.
Meso-frames can be quite complex, much more complex than any of the participating micro-agents). In this way, the expressive power of Dual‘s representation scheme is not limited by the restriction that each agent can have only a few slots. Coalitions are limited only by the con�nec�tion�ist mechanism that controls the activation level of their individual members and hence indirectly restricts the number of agents that can be active at a time.
The con�nec�tion�ist mechanism is responsible also for determining which parts of a meso-frame are relevant. It is possible, especially in loose co�ali�tions, that only part of their members are active enough to pass the threshold. Thus, only part of the declarative knowledge stored in the meso-frame will be visible. In other circumstances, another part of the knowledge will be brought to the fore. This makes Dual meso-frames dynamic and context-dependent, two desirable properties that pose difficulties to conventional frame-based systems. These properties relate Dual co�ali�tions to schemata in some con�nec�tion�ist net�works (Rumelhart et al, 1986).
3.3.4. Dynamic Emergent Computation
From a processing point of view, co�ali�tions are important in Dual because it is at their level where non-local com�pu�ta�tion emerges. Each individual Dual agent contributes somehow to the collective performance by doing its small and local-specific job. Each agent runs at its own speed and in parallel with other agents. To succeed in its task, the agent usually depends on other members of its co�ali�tion. It cooperates with them and competes with the agents from other co�ali�tions. The net result of all these activities is that the co�ali�tion as a whole does (or does not) accomplish some computation that is beyond the reach of any individual agent. This accomplishment has resulted from an emergent process — it is not carried out by any centralized processor following a rigid routine.
It is important to note that the interaction pattern among the participants in a co�ali�tion changes dynamically over time. New agents join in, others stay back, fall out and so on. In the node-and-link terminology, the topology of the network changes via dynamic addition and/or removal of nodes and links. This com�pu�ta�tional dynamics plays a key role in the overall flexible and context-sensitive behavior of Dual-based models (Kokinov et al, 1996).
3.3.5. An Example: The Marker Passing Mechanism
The symbolic processors of many Dual agents are pre�programmed to perform local marker passing (LMP). It is outlined here as an illustration of the symbolic processing in the archi�tec�ture as well as a basic mechanism for the Ambr model (subsection 4.3.2.).
Marker passing (MP) has been developed within the semantic net�work tradition (Quillian, 1966; Fahlman, 1979; Charniak, 1983; Hendler, 1988, 1989). In its most basic form it is a tool for answering the question, “Given two nodes in the net�work, is there a path be�tween them?”. The idea behind the marker passing is simple: the two nodes of origin are marked, they mark their neighbors, which in turn mark their neighbors and so forth. Thus, each origin sets up a wave of markers that gradually expands until some attenuation mechanism stops the marking. If the waves starting from the two origins meet, one or more paths are found and reported. These paths can then be used for various purposes including natural language comprehension (Charniak, 1983), planning and problem solving (Hendler, 1988), similarity judgment (Kokinov, 1992b), etc. In Ambr2 the marker passing is used during the mapping subprocess: the intersection of markers justifies the hypothesis that their nodes of origin correspond (see section 4.3.2.).
The global marker passing (GMP) in Dual is a dynamic emergent process that happens at the meso�level. That is, it is a whole coalition of Dual agents that cooperatively produce the final result. Global MP depends on local MP — the ability of each node in the net�work to receive and send markers. On the other hand, the important result — the intersection of two markers and the path connecting their origins — cannot be produced by any single node.
To take a concrete example, consider how Ambr2 generates the hypothesis that teapot-1 corresponds to glass-2 on the grounds that both are instances of the concept liquid-holder. Figure 3.3.5.1 shows the relevant co�ali�tion of Dual agents (using the node-and-link notation).


Figure 3.3.5.1. Fragment of the semantic net�work used in the marker-passing process. See text for details.
Suppose that at moment t=0.0 the agent teapot-1 is activated from some source external to the coalition. This will trigger a sequence of events over the entire co�ali�tion that eventually will produce a new tem�por�ary agent named teapot-1<-->glass-2 at moment t=5.3. The following transcript, which is adapted excerpt of an actual Ambr2 transcript, reveals the major events during this process. (Agent names begin with the prefix ‘#$’ and markers are printed as ‘#<M origin>’.) Compare the transcript below with the time diagram shown in Figure 3.3.5.2. (See also section 4.3.3.6.)
At time 0.0, adding #$teapot-1 to WM.
At time 0.1, adding #$teapot to WM.
At time 0.3, adding #$liquid-holder to WM.
At time 0.5, #<M teapot-1> received in the input zone of #$teapot.
At time 0.6, adding #$glass to WM.
At time 1.0, adding #$glass-2 to WM.
At time 1.1, #<M teapot-1> received in the input zone of #$liquid-holder.
At time 1.8, #<M glass-2> received in the input zone of #$glass.
At time 1.8, #<M teapot-1> received in the input zone of #$aftifact.
At time 1.9, adding #$solid-object to WM.
At time 2.3, #<M glass-2> received in the input zone of #$liquid-holder.
At time 2.4, #<M teapot-1> and #<M glass-2> intersected at #$liquid-holder.
At time 2.8, #<NCR liquid-holder> received in the input zone of #$nc1.
At time 5.3, creating a new agent: #$teapot-1<-->glass-2.
...
From this transcript, one can reconstruct the following story: Once teapot-1 is activated, it spreads activation to its co�ali�tion partners, bringing them into the working memory (WM). They pass the threshold at different moments, reflecting their dif�fer�ent connectedness to the source of activation which in this case is teapot-1. In the same time, the symbolic processor of teapot-1 is working and sends a marker to its ‘parent’ in the network, namely teapot. (Teapot-1 can reach its ‘parent’ via the link labeled :inst-of.) The symbolic operation of producing and sending a marker takes time and, therefore, the marker is actually sent to teapot at moment 0.5.  In turn, teapot sends a copy of the marker to liquid-holder. The same operation (handling a marker) takes 0.6 time units because teapot is less active than teapot-1 and hence its symbolic processor works more slowly. The agent liquid-holder (like all other agents earlier in the path) stores the marker in its local buffer. It also tries to send the marker further but its parent is not visible — it has not been activated enough to pass the threshold. Therefore, the marker stops.
teapot-1
teapot
liquid-holder
glass
glass-2
nc1

Figure 3.3.5.2. Time diagram corresponding to the transcript given in the text.
Meanwhile, the spreading activation mechanism continues to add agents to the working memory. At time 1.0, glass-2 also passes the threshold. Its symbolic processor is pre�programmed to emit a marker whenever it enters the WM and, therefore, glass-2 begins working on this task at time 1.0. This task takes 0.8 units of simulated time because the activation level (and hence the speed) of the agent is relatively low. The new marker is sent to glass at time 1.8 and eventually reaches liquid-holder at time 2.3. The symbolic processor of the latter detects the intersection of the new marker with the old one (which has been stored in the buffer) and produces a node-construction request. This request is then sent to a special agent (named nc1) capable of constructing temporary agents. Creating a whole agent from scratch is difficult — it takes 2.5 units of time even for a specialized agent like nc1. The new agent enters the working memory at time 5.3. It has three slots filled with references to teapot-1, glass-2, and liquid-holder, respectively. Now the topology of the net�work has changed, the new state of affairs is shown in Figure 3.3.5.3. The presence of a new node (and new links) will affect the activation levels of all agents in this part of the net�work, which in turn will affect their speed, etc.


Figure 3.3.5.3. The net�work from figure 3.3.5.1 after addition of the new agent named teapot-1<-->glass-2.
The excessive detail of the transcript presented above makes it dif�ficult to see the forest behind the trees. If one turns off all messages except the most important ones�, however, the emergent nature of the process becomes more clear. New agents are created at irregular and virtually unpredictable moments in time. The exact course of the com�pu�ta�tion is determined by a multitude of factors, each of which has relatively minor impact on the final outcome. Yet the process exhibits certain regularities — more active areas of the network generate more marker intersections, the new agents created from these intersections are incorporated faster into the net�work, which in turn gives them advantage over their rivals and so on. Gradually, the process of dynamic emergent com�pu�ta�tion advances to completion. And the final product of the computation is ‘meaningful’ in most (but not all) cases.
3.4. Dual at the Macrolevel
To summarize our presentation so far, at Dual's microlevel we speak in terms of Dual agents, at the mesolevel — of coalitions. Now, at the highest level of granularity  we speak of Dual formations and sys�tems. A Dual formation  consists of a big population of agents — in the order of hundreds or thousands in number. A Dual sys�tem consists of all agents that are present at a given instant of time, regardless of whether they are active or inactive, permanent or tem�por�ary, etc. The system embodies the Dual-based model as a whole. The behavior of the model is by definition the behavior of the sys�tem and vice versa.
Different models built on top of the archi�tec�ture may involve dif�fer�ent formations. Usually, there are only two or three formations which are richly inter�connected and form a unitary sys�tem. In this sub�section, we will present the formation that is present in all models — the Dual  net�work. Ambr2 uses one more formation — the constraint satisfaction net�work — which will be presented in the next chapter.
3.4.1. The Dual Network
Most of the agents and, therefore, most of the knowledge and processing in the architecture reside in the Dual network. Its nodes are the agents themselves, its links stand for interactions between them. There are no restrictions on the topology of the network — an arbitrary number of links may come in or out any given node.
Most nodes in the Dual network are permanent but additional temporary ones may be created during the computation and added to the total pool. Similarly, most links are permanent but additional temporary ones may be established. Thus, the topology of the network is relatively stable but not absolutely frozen. It changes with time and this is of major importance for the overall dynamics of the system.
The collection of all permanent nodes and links in the Dual network comprise the long-term memory (LTM) of the architecture. It contains the system's knowledge (both declarative and procedural) about the world. LTM is very big — even for simple domains and situations one needs hundreds or thousands of agents.
In any given moment, however, only a small portion of this large formation is actually needed. Dual provides special mechanisms, the most important of which is spreading activation, for effectively determining which agents (and coalitions) are relevant to the particular task and context. Recall that each agent has an activation level that is the system'sÊestimate of its relevance. So, by definition the working memory (WM) of the architecture consists of the set of all agents whose activation level exceeds a certain threshold.
The working memory is the locus of almost all processing in Dual and, therefore, we will consider it in more detail. An agent can enter WM in two ways: permanent agents enter it whenever they become active enough to pass the threshold; temporary agents must be explicitly created and linked to the network by a specialized node constructor. Agents stay in the working memory as long as their activation level is maintained above the threshold. When a permanent agent 'drops out' of WM, it returns back to dormancy and could enter WM again later. Temporary agents, however, have no second chance — when they 'drop out', they vanish altogether.
To sum up, the contents of the working memory may be expressed by the following formula:
WM  =  active portion of LTM  +  temporary agents .
This formula, however, is potentially misleading. It suggests that the temporary agents are somehow isolated from the rest. They are not. The actual state of affairs is depicted in Figure 3.4.1.







Figure 3.4.1. The long-term memory (LTM) of Dual. Active permanent agents are shown as O, inactive permanent onesÊ— as  o, and temporary nodes — as X.
3.4.2. The Flow of Activation in the Network
Activation can enter the Dual network from a special node called input node. This node models the influence of the environment. In future models it will be replaced by a whole formation — the visual array. At the time being, however, the perceptual mechanisms in the archi�tec�ture are extremely limited. There is only one node which is a constant (and strong) source of ac�ti�va�tion. The human user of the sys�tem attaches some agents to that node, thus allowing for the spread of ac�ti�va�tion from the input node to the Dual network. In this case we speak of exogenous activation (with respect to the network). It is the medium of perceptual stimulation in Dual models. 
There are sources of endogenous activation  too. Most importantly, there is a special goal node  which is always active. It is, in a very rudimentary sense, the medium of the intentions of the system. When the model is working on some task, the agent representing the goal of the task is connected (again by the human user) to the goal node and thus receives continuous and strong support from it. In Dual, there may be several goals connected to the goal node simultaneously and competing for the resources of the system.
Finally, small amounts of endogenous activation may be spontaneously created locally by the symbolic aspect of a given agent when the outcome of its symbolic operation is especially successful.
In short, activation in Dual springs from some well defined sources and then spreads among the nodes via the links. The links in the network are excitatory — they have positive weights. This means that unless the activation is restricted somehow, it will soon spread throughout the entire network. The activation level of all agents will reach its maximum value and the purpose of the whole mechanism will be defeated.  To prevent this, there is a decay  process which limits the total amount of activation in the system. In the absence of external stimulation the activation level of any given agent decreases spontaneously by an exponential law. Therefore, in order for an agent to stay active, it must receive support from neighboring agents.
The decay rate, however, is not very big. This provides for a certain amount of inertia in the pattern of activation. In other words, some residual activation  stays for a while even after the external support has been eliminated. As a consequence, recent states of the system can influence its current one. Priming effects and sets (Einstellungen) can be modeled in this way. The behavior of the model fits psychological data — priming effects (i) exist and (ii) decrease in the course of time (Kokinov 1990, 1994a).
As it was stated from the very beginning, Dual is designed explicitly to model the phenomena of context effects. The dynamic theory of context  proposed by Boicho Kokinov (1995) is the foundation of this enterprise. In the theory, context  is considered as "the dynamic fuzzy set of all associatively relevant memory elements (mental representations or operations) at a particular instant of time" (Kokinov & Yoveva 1996). Further, distinction is made between reasoning-induced, perception-induced, and memory-induced contexts. Each one of these has a straightforward counterpart in Dual — endogenous, exogenous, and residual activation respectively.
[Comparison with ACT* at the macro-level. Integration.]

�	Unicellular organisms, prokaryotes, viruses, etc. are not considered here.
�	Uni�ovular twins are an exception.
�	To make the story even more complicated, many of the symbols manipulated by Dual agents stand for other Dual agents (which are in turn symbols themselves). That is, there are symbols which stand for other symbols.
�	To give the word to Drew McDermott (1981): “In lucid moments, [semantic] net�work hackers realize that lines drawn between nodes stand for pointers [and] that almost every�thing in an AI prog�ram is a pointer. [...] Their lucid moments are few.”
�	The term part here should be under�stood broadly. It is intended to cover concepts like parts of objects, elements of situations, participants in rela�tions, and so forth.
�	This uniqueness does not imply centralized administration of names. Each node constructor can maintain an internal counter or some other means for generating unique names without having to check for collisions with existing ones.
�	Perceptual mechanisms are, at the time being, completely lacking in the archi�tec�ture. However, they are recognized as key ingredients of any plausible cognitive model and incorporation of such mechanisms is an important direction for future research.
�	or, better, if one has access to a graphical interface

�PAGE  �45�


page � PAGE �53�





